Chinese-Emotion / README.md
Johnson8187's picture
Update README.md
cf1cfc8 verified
|
raw
history blame
6.93 kB
---
license: mit
language:
- zh
base_model:
- joeddav/xlm-roberta-large-xnli
pipeline_tag: text-classification
tags:
- emotion
library_name: transformers
---
# chinese-text-emotion-classifier
## 📚 Model Introduction
This model is fine-tuned based on the [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) model, specializing in **Chinese text emotion analysis**.
Through fine-tuning, the model can identify the following 8 emotion labels:
- **Neutral tone**
- **Concerned tone**
- **Happy tone**
- **Angry tone**
- **Sad tone**
- **Questioning tone**
- **Surprised tone**
- **Disgusted tone**
The model is applicable to various scenarios, such as customer service emotion monitoring, social media analysis, and user feedback classification.
---
# chinese-text-emotion-classifier
## 📚 模型簡介
本模型基於[joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) 模型進行微調,專注於 **中文語句情感分析**
通過微調,模型可以識別以下 8 種情緒標籤:
- **平淡語氣**
- **關切語調**
- **開心語調**
- **憤怒語調**
- **悲傷語調**
- **疑問語調**
- **驚奇語調**
- **厭惡語調**
該模型適用於多種場景,例如客服情緒監控、社交媒體分析以及用戶反饋分類。
---
## 🚀 Quick Start
### Install Dependencies
Ensure that you have installed Hugging Face's Transformers library and PyTorch:
```bash
pip install transformers torch
```
###Load the Model
Use the following code to load the model and tokenizer, and perform emotion classification:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 添加設備設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 標籤映射字典
label_mapping = {
0: "平淡語氣",
1: "關切語調",
2: "開心語調",
3: "憤怒語調",
4: "悲傷語調",
5: "疑問語調",
6: "驚奇語調",
7: "厭惡語調"
}
def predict_emotion(text, model_path="Johnson8187/Chinese-emotion-classifier"):
# 載入模型和分詞器
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) # 移動模型到設備
# 將文本轉換為模型輸入格式
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # 移動輸入到設備
# 進行預測
with torch.no_grad():
outputs = model(**inputs)
# 取得預測結果
predicted_class = torch.argmax(outputs.logits).item()
predicted_emotion = label_mapping[predicted_class]
return predicted_emotion
if __name__ == "__main__":
# 使用範例
test_texts = [
"雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。",
"你說的那些話真的讓我很困惑,完全不知道該怎麼反應。",
"這世界真的是無情,為什麼每次都要給我這樣的考驗?",
"有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。",
"每次想起那段過去,我的心還是會痛,真的無法釋懷。",
"我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。",
"我完全沒想到你會這麼做,這讓我驚訝到無法言喻。",
"我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。"
]
for text in test_texts:
emotion = predict_emotion(text)
print(f"文本: {text}")
print(f"預測情緒: {emotion}\n")
```
---
## 🚀 快速開始
### 安裝依賴
請確保安裝了 Hugging Face 的 Transformers 庫和 PyTorch:
```bash
pip install transformers torch
```
### 加載模型
使用以下代碼加載模型和分詞器,並進行情感分類:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 添加設備設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 標籤映射字典
label_mapping = {
0: "平淡語氣",
1: "關切語調",
2: "開心語調",
3: "憤怒語調",
4: "悲傷語調",
5: "疑問語調",
6: "驚奇語調",
7: "厭惡語調"
}
def predict_emotion(text, model_path="Johnson8187/Chinese-emotion-classifier"):
# 載入模型和分詞器
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) # 移動模型到設備
# 將文本轉換為模型輸入格式
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # 移動輸入到設備
# 進行預測
with torch.no_grad():
outputs = model(**inputs)
# 取得預測結果
predicted_class = torch.argmax(outputs.logits).item()
predicted_emotion = label_mapping[predicted_class]
return predicted_emotion
if __name__ == "__main__":
# 使用範例
test_texts = [
"雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。",
"你說的那些話真的讓我很困惑,完全不知道該怎麼反應。",
"這世界真的是無情,為什麼每次都要給我這樣的考驗?",
"有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。",
"每次想起那段過去,我的心還是會痛,真的無法釋懷。",
"我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。",
"我完全沒想到你會這麼做,這讓我驚訝到無法言喻。",
"我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。"
]
for text in test_texts:
emotion = predict_emotion(text)
print(f"文本: {text}")
print(f"預測情緒: {emotion}\n")
```
---
### Dataset
- The fine-tuning dataset consists of 4,000 annotated Traditional Chinese emotion samples, covering various emotion categories to ensure the model's generalization capability in emotion classification.
- The dataset is being prepared for public release.
### 數據集
- 微調數據來自4000個自行標註的高質量繁體中文情感語句數據,覆蓋了多種情緒類別,確保模型在情感分類上的泛化能力。
- 數據集正在準備公開
---
🌟 Contact and Feedback
If you encounter any issues while using this model, please contact:
Email: fable8043@gmail.com
Hugging Face Project Page: chinese-text-emotion-classifier
## 🌟 聯繫與反饋
如果您在使用該模型時有任何問題,請聯繫:
- 郵箱:`fable8043@gmail.com`
- Hugging Face 項目頁面:[chinese-text-emotion-classifier](https://huggingface.co/Johnson8187/chinese-text-emotion-classifier)