|
--- |
|
license: mit |
|
language: |
|
- zh |
|
base_model: |
|
- joeddav/xlm-roberta-large-xnli |
|
pipeline_tag: text-classification |
|
tags: |
|
- emotion |
|
library_name: transformers |
|
--- |
|
# chinese-text-emotion-classifier |
|
|
|
## 📚 Model Introduction |
|
|
|
This model is fine-tuned based on the [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) model, specializing in **Chinese text emotion analysis**. |
|
Through fine-tuning, the model can identify the following 8 emotion labels: |
|
- **Neutral tone** |
|
- **Concerned tone** |
|
- **Happy tone** |
|
- **Angry tone** |
|
- **Sad tone** |
|
- **Questioning tone** |
|
- **Surprised tone** |
|
- **Disgusted tone** |
|
|
|
The model is applicable to various scenarios, such as customer service emotion monitoring, social media analysis, and user feedback classification. |
|
|
|
--- |
|
# chinese-text-emotion-classifier |
|
|
|
## 📚 模型簡介 |
|
本模型基於[joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) 模型進行微調,專注於 **中文語句情感分析**。 |
|
通過微調,模型可以識別以下 8 種情緒標籤: |
|
- **平淡語氣** |
|
- **關切語調** |
|
- **開心語調** |
|
- **憤怒語調** |
|
- **悲傷語調** |
|
- **疑問語調** |
|
- **驚奇語調** |
|
- **厭惡語調** |
|
|
|
該模型適用於多種場景,例如客服情緒監控、社交媒體分析以及用戶反饋分類。 |
|
|
|
--- |
|
## 🚀 Quick Start |
|
|
|
### Install Dependencies |
|
Ensure that you have installed Hugging Face's Transformers library and PyTorch: |
|
```bash |
|
pip install transformers torch |
|
``` |
|
|
|
###Load the Model |
|
Use the following code to load the model and tokenizer, and perform emotion classification: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
# 添加設備設定 |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# 標籤映射字典 |
|
label_mapping = { |
|
0: "平淡語氣", |
|
1: "關切語調", |
|
2: "開心語調", |
|
3: "憤怒語調", |
|
4: "悲傷語調", |
|
5: "疑問語調", |
|
6: "驚奇語調", |
|
7: "厭惡語調" |
|
} |
|
|
|
def predict_emotion(text, model_path="Johnson8187/Chinese-emotion-classifier"): |
|
# 載入模型和分詞器 |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) # 移動模型到設備 |
|
|
|
# 將文本轉換為模型輸入格式 |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # 移動輸入到設備 |
|
|
|
# 進行預測 |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
# 取得預測結果 |
|
predicted_class = torch.argmax(outputs.logits).item() |
|
predicted_emotion = label_mapping[predicted_class] |
|
|
|
return predicted_emotion |
|
|
|
if __name__ == "__main__": |
|
# 使用範例 |
|
test_texts = [ |
|
"雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。", |
|
"你說的那些話真的讓我很困惑,完全不知道該怎麼反應。", |
|
"這世界真的是無情,為什麼每次都要給我這樣的考驗?", |
|
"有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。", |
|
"每次想起那段過去,我的心還是會痛,真的無法釋懷。", |
|
"我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。", |
|
"我完全沒想到你會這麼做,這讓我驚訝到無法言喻。", |
|
"我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。" |
|
] |
|
|
|
for text in test_texts: |
|
emotion = predict_emotion(text) |
|
print(f"文本: {text}") |
|
print(f"預測情緒: {emotion}\n") |
|
|
|
``` |
|
|
|
--- |
|
## 🚀 快速開始 |
|
|
|
### 安裝依賴 |
|
請確保安裝了 Hugging Face 的 Transformers 庫和 PyTorch: |
|
```bash |
|
pip install transformers torch |
|
``` |
|
|
|
### 加載模型 |
|
使用以下代碼加載模型和分詞器,並進行情感分類: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
# 添加設備設定 |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# 標籤映射字典 |
|
label_mapping = { |
|
0: "平淡語氣", |
|
1: "關切語調", |
|
2: "開心語調", |
|
3: "憤怒語調", |
|
4: "悲傷語調", |
|
5: "疑問語調", |
|
6: "驚奇語調", |
|
7: "厭惡語調" |
|
} |
|
|
|
def predict_emotion(text, model_path="Johnson8187/Chinese-emotion-classifier"): |
|
# 載入模型和分詞器 |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) # 移動模型到設備 |
|
|
|
# 將文本轉換為模型輸入格式 |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # 移動輸入到設備 |
|
|
|
# 進行預測 |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
# 取得預測結果 |
|
predicted_class = torch.argmax(outputs.logits).item() |
|
predicted_emotion = label_mapping[predicted_class] |
|
|
|
return predicted_emotion |
|
|
|
if __name__ == "__main__": |
|
# 使用範例 |
|
test_texts = [ |
|
"雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。", |
|
"你說的那些話真的讓我很困惑,完全不知道該怎麼反應。", |
|
"這世界真的是無情,為什麼每次都要給我這樣的考驗?", |
|
"有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。", |
|
"每次想起那段過去,我的心還是會痛,真的無法釋懷。", |
|
"我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。", |
|
"我完全沒想到你會這麼做,這讓我驚訝到無法言喻。", |
|
"我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。" |
|
] |
|
|
|
for text in test_texts: |
|
emotion = predict_emotion(text) |
|
print(f"文本: {text}") |
|
print(f"預測情緒: {emotion}\n") |
|
|
|
``` |
|
|
|
--- |
|
|
|
### Dataset |
|
- The fine-tuning dataset consists of 4,000 annotated Traditional Chinese emotion samples, covering various emotion categories to ensure the model's generalization capability in emotion classification. |
|
- The dataset is being prepared for public release. |
|
|
|
|
|
### 數據集 |
|
- 微調數據來自4000個自行標註的高質量繁體中文情感語句數據,覆蓋了多種情緒類別,確保模型在情感分類上的泛化能力。 |
|
- 數據集正在準備公開 |
|
|
|
--- |
|
|
|
🌟 Contact and Feedback |
|
If you encounter any issues while using this model, please contact: |
|
|
|
Email: fable8043@gmail.com |
|
Hugging Face Project Page: chinese-text-emotion-classifier |
|
|
|
## 🌟 聯繫與反饋 |
|
如果您在使用該模型時有任何問題,請聯繫: |
|
- 郵箱:`fable8043@gmail.com` |
|
- Hugging Face 項目頁面:[chinese-text-emotion-classifier](https://huggingface.co/Johnson8187/chinese-text-emotion-classifier) |