|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: A Black man, Floyd died in police custody May 25 after a Minneapolis cop kneeled |
|
on his neck for more than eight minutes. |
|
- text: 'Now Modi has made international headlines for yet another similarity: He’s |
|
constructing a massive wall … but unlike Trump’s goal of keeping immigrants out, |
|
Modi’s wall was built to hide the country’s poverty from the gold-plated American |
|
president.' |
|
- text: Billionaire Democrat presidential hopeful Mike Bloomberg is a staunch proponent |
|
of gun control for America with one caveat–he gets to spend his days surrounded |
|
by good guys with guns to keep him safe. |
|
- text: The number of women behind the camera on Hollywood movies jumped to record |
|
levels in 2019, with 12 directing top-grossing films including “Frozen II,” “Captain |
|
Marvel” and “Hustlers,” two studies showed on Thursday. |
|
- text: The hearing comes a day after the Democrat-led House held a hearing to discuss |
|
the alleged threat of white nationalist terrorism to the country. |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: BAAI/bge-small-en-v1.5 |
|
model-index: |
|
- name: SetFit with BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.7010135135135135 |
|
name: Accuracy |
|
- type: precision |
|
value: 0.7024038067625294 |
|
name: Precision |
|
- type: recall |
|
value: 0.7010135135135135 |
|
name: Recall |
|
- type: f1 |
|
value: 0.7015820127453647 |
|
name: F1 |
|
--- |
|
|
|
# SetFit with BAAI/bge-small-en-v1.5 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:-------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| left | <ul><li>'Tennessee has an annual sales tax-free holiday weekend that\xa0begins\xa0on the last Friday of July.\xa0'</li><li>'In what could be construed as an act of treason,\xa0President Trump recently ordered such\xa0paramilitary groups and right-wing thugs\xa0to take up arms and to threaten Democratic-led state governments such as Michigan\'s in order to force them to "reopen" their state.'</li><li>'Trump, not surprisingly, used the speech as an opportunity to attack former President Barack Obama, claiming that he did nothing to promote criminal justice reform when he was in office.\xa0'</li></ul> | |
|
| right | <ul><li>'In the Joe Biden-Bernie Sanders “Unity” platform, Democrats are vowing to provide free, American taxpayer-funded health care to illegal aliens who are able to enroll in former President Obama’s Deferred Action for Childhood Arrivals (DACA) program.'</li><li>'The new numbers from Gallup are an unwelcome sight for Democrats after kicking off the week with a disaster caucus in Iowa who and simultaneously anticipating a Trump acquittal in the Senate. Trump will also now have the opportunity to shine in his newfound approval in Tuesday night’s address to the nation while Democrats are in disarray.'</li><li>'Though Trump has successfully increased wages by four percent over the last 12 months for America’s blue collar and working class by decreasing foreign competition through a crackdown on illegal immigration, experts have warned that those wage hikes will not continue heading into the 2020 election should current illegal immigration levels keep rising at record levels.'</li></ul> | |
|
| center | <ul><li>'LeBron James shares thoughts on his Los Angeles house getting vandalized pic twitter com 4RFLK42xhu'</li><li>'O’Rourke, a native of the U.S.-Mexican border town El Paso, has blasted Trump’s use of tariffs as a “huge mistake” and has vowed to suspend them on his first day in office.'</li><li>'Here are a few people we will be reminding you about in every article that pertains to a film they re tied to '</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | Precision | Recall | F1 | |
|
|:--------|:---------|:----------|:-------|:-------| |
|
| **all** | 0.7010 | 0.7024 | 0.7010 | 0.7016 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("JordanTallon/Unifeed") |
|
# Run inference |
|
preds = model("A Black man, Floyd died in police custody May 25 after a Minneapolis cop kneeled on his neck for more than eight minutes.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 9 | 32.9560 | 90 | |
|
|
|
| Label | Training Sample Count | |
|
|:-------|:----------------------| |
|
| center | 777 | |
|
| left | 780 | |
|
| right | 808 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (200, 200) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 1 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: True |
|
- warmup_proportion: 0.1 |
|
- seed: 326 |
|
- run_name: unifeed_bias_training |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:--------:|:--------:|:-------------:|:---------------:| |
|
| 0.0002 | 1 | 0.2486 | - | |
|
| 1.0 | 4878 | 0.0092 | 0.308 | |
|
| 2.0 | 9756 | 0.0004 | 0.3228 | |
|
| 3.0 | 14634 | 0.0002 | 0.3326 | |
|
| 4.0 | 19512 | 0.0002 | 0.3191 | |
|
| 5.0 | 24390 | 0.0001 | 0.3279 | |
|
| 6.0 | 29268 | 0.0001 | 0.3384 | |
|
| 7.0 | 34146 | 0.0001 | 0.3311 | |
|
| 8.0 | 39024 | 0.0001 | 0.3316 | |
|
| 0.0068 | 1 | 0.0007 | - | |
|
| 1.0 | 148 | 0.0006 | 0.3042 | |
|
| 2.0 | 296 | 0.0006 | 0.3352 | |
|
| 3.0 | 444 | 0.0382 | 0.3059 | |
|
| 4.0 | 592 | 0.0022 | 0.3055 | |
|
| 5.0 | 740 | 0.0044 | 0.3034 | |
|
| 6.0 | 888 | 0.0006 | 0.3185 | |
|
| 7.0 | 1036 | 0.0005 | 0.3066 | |
|
| 8.0 | 1184 | 0.0008 | 0.3196 | |
|
| 9.0 | 1332 | 0.0004 | 0.326 | |
|
| 10.0 | 1480 | 0.0004 | 0.352 | |
|
| 11.0 | 1628 | 0.0005 | 0.3122 | |
|
| 12.0 | 1776 | 0.0003 | 0.3268 | |
|
| 13.0 | 1924 | 0.0004 | 0.2928 | |
|
| 14.0 | 2072 | 0.0004 | 0.3148 | |
|
| 15.0 | 2220 | 0.0003 | 0.3153 | |
|
| 16.0 | 2368 | 0.0004 | 0.3385 | |
|
| 17.0 | 2516 | 0.0004 | 0.3107 | |
|
| 18.0 | 2664 | 0.0004 | 0.3225 | |
|
| 19.0 | 2812 | 0.0003 | 0.3073 | |
|
| 20.0 | 2960 | 0.0003 | 0.316 | |
|
| 21.0 | 3108 | 0.0003 | 0.3053 | |
|
| 22.0 | 3256 | 0.0004 | 0.3227 | |
|
| 23.0 | 3404 | 0.0004 | 0.3099 | |
|
| 24.0 | 3552 | 0.0003 | 0.3043 | |
|
| 25.0 | 3700 | 0.0003 | 0.3316 | |
|
| 0.0034 | 1 | 0.0004 | - | |
|
| 1.0 | 296 | 0.0003 | 0.3321 | |
|
| 2.0 | 592 | 0.0016 | 0.3202 | |
|
| 3.0 | 888 | 0.0005 | 0.3376 | |
|
| 4.0 | 1184 | 0.0004 | 0.3167 | |
|
| 5.0 | 1480 | 0.0003 | 0.3342 | |
|
| 6.0 | 1776 | 0.0003 | 0.3183 | |
|
| 7.0 | 2072 | 0.0003 | 0.3086 | |
|
| 8.0 | 2368 | 0.0003 | 0.312 | |
|
| 9.0 | 2664 | 0.0003 | 0.3169 | |
|
| 10.0 | 2960 | 0.0003 | 0.3317 | |
|
| 11.0 | 3256 | 0.0004 | 0.3126 | |
|
| 12.0 | 3552 | 0.0003 | 0.3003 | |
|
| 13.0 | 3848 | 0.0003 | 0.3119 | |
|
| 14.0 | 4144 | 0.0003 | 0.316 | |
|
| 15.0 | 4440 | 0.0002 | 0.3183 | |
|
| 16.0 | 4736 | 0.0003 | 0.313 | |
|
| 17.0 | 5032 | 0.0003 | 0.3187 | |
|
| 18.0 | 5328 | 0.0002 | 0.3295 | |
|
| 19.0 | 5624 | 0.0002 | 0.3487 | |
|
| 20.0 | 5920 | 0.0003 | 0.3458 | |
|
| 21.0 | 6216 | 0.0002 | 0.331 | |
|
| 22.0 | 6512 | 0.0002 | 0.3499 | |
|
| 23.0 | 6808 | 0.0003 | 0.3296 | |
|
| 24.0 | 7104 | 0.0003 | 0.3097 | |
|
| 25.0 | 7400 | 0.0003 | 0.3197 | |
|
| 0.0068 | 1 | 0.0003 | - | |
|
| 1.0 | 148 | 0.0003 | 0.3219 | |
|
| 2.0 | 296 | 0.0003 | 0.3185 | |
|
| 3.0 | 444 | 0.0003 | 0.3114 | |
|
| 4.0 | 592 | 0.0003 | 0.2989 | |
|
| 5.0 | 740 | 0.0003 | 0.335 | |
|
| 6.0 | 888 | 0.0004 | 0.3132 | |
|
| 7.0 | 1036 | 0.0003 | 0.3264 | |
|
| 8.0 | 1184 | 0.0004 | 0.3461 | |
|
| 9.0 | 1332 | 0.0002 | 0.3185 | |
|
| 10.0 | 1480 | 0.0002 | 0.3336 | |
|
| 11.0 | 1628 | 0.0003 | 0.3282 | |
|
| 12.0 | 1776 | 0.0003 | 0.3206 | |
|
| 13.0 | 1924 | 0.0002 | 0.3303 | |
|
| 14.0 | 2072 | 0.0002 | 0.3362 | |
|
| 15.0 | 2220 | 0.0002 | 0.3382 | |
|
| 16.0 | 2368 | 0.0002 | 0.3241 | |
|
| 17.0 | 2516 | 0.0002 | 0.3303 | |
|
| 18.0 | 2664 | 0.0002 | 0.3301 | |
|
| 19.0 | 2812 | 0.0002 | 0.319 | |
|
| 20.0 | 2960 | 0.0002 | 0.3304 | |
|
| 21.0 | 3108 | 0.0002 | 0.3379 | |
|
| 22.0 | 3256 | 0.0002 | 0.3424 | |
|
| 23.0 | 3404 | 0.0002 | 0.3273 | |
|
| 24.0 | 3552 | 0.0002 | 0.3213 | |
|
| 25.0 | 3700 | 0.0002 | 0.3191 | |
|
| 0.0068 | 1 | 0.0003 | - | |
|
| 1.0 | 148 | 0.0003 | 0.3245 | |
|
| 2.0 | 296 | 0.0002 | 0.3148 | |
|
| 3.0 | 444 | 0.0002 | 0.3174 | |
|
| 4.0 | 592 | 0.0003 | 0.3242 | |
|
| 5.0 | 740 | 0.0003 | 0.3352 | |
|
| 6.0 | 888 | 0.0003 | 0.3112 | |
|
| 7.0 | 1036 | 0.0003 | 0.3204 | |
|
| 8.0 | 1184 | 0.0003 | 0.3734 | |
|
| 9.0 | 1332 | 0.0002 | 0.3383 | |
|
| 10.0 | 1480 | 0.0003 | 0.3272 | |
|
| 11.0 | 1628 | 0.0002 | 0.3106 | |
|
| 12.0 | 1776 | 0.0003 | 0.3307 | |
|
| 13.0 | 1924 | 0.0003 | 0.3359 | |
|
| 14.0 | 2072 | 0.0002 | 0.3264 | |
|
| 15.0 | 2220 | 0.0002 | 0.3254 | |
|
| 16.0 | 2368 | 0.0002 | 0.3349 | |
|
| 17.0 | 2516 | 0.0132 | 0.3399 | |
|
| 18.0 | 2664 | 0.0002 | 0.343 | |
|
| 19.0 | 2812 | 0.0002 | 0.3306 | |
|
| 20.0 | 2960 | 0.0002 | 0.3472 | |
|
| 21.0 | 3108 | 0.0002 | 0.3234 | |
|
| 22.0 | 3256 | 0.002 | 0.3281 | |
|
| 23.0 | 3404 | 0.0002 | 0.3289 | |
|
| 24.0 | 3552 | 0.0002 | 0.2974 | |
|
| 25.0 | 3700 | 0.0002 | 0.3153 | |
|
| 26.0 | 3848 | 0.0002 | 0.3273 | |
|
| 27.0 | 3996 | 0.0002 | 0.313 | |
|
| 28.0 | 4144 | 0.0002 | 0.3303 | |
|
| 29.0 | 4292 | 0.0002 | 0.3106 | |
|
| 30.0 | 4440 | 0.0002 | 0.3155 | |
|
| 31.0 | 4588 | 0.0002 | 0.3553 | |
|
| 32.0 | 4736 | 0.0002 | 0.3039 | |
|
| 33.0 | 4884 | 0.0001 | 0.3133 | |
|
| 34.0 | 5032 | 0.0002 | 0.3323 | |
|
| 35.0 | 5180 | 0.0002 | 0.3264 | |
|
| 36.0 | 5328 | 0.0002 | 0.3133 | |
|
| 37.0 | 5476 | 0.0002 | 0.3308 | |
|
| 38.0 | 5624 | 0.0002 | 0.3137 | |
|
| 39.0 | 5772 | 0.0002 | 0.3062 | |
|
| 40.0 | 5920 | 0.0002 | 0.3438 | |
|
| 41.0 | 6068 | 0.0002 | 0.3426 | |
|
| 42.0 | 6216 | 0.0002 | 0.326 | |
|
| 43.0 | 6364 | 0.0002 | 0.322 | |
|
| 44.0 | 6512 | 0.0002 | 0.3202 | |
|
| 45.0 | 6660 | 0.0002 | 0.3253 | |
|
| 46.0 | 6808 | 0.0002 | 0.3272 | |
|
| 47.0 | 6956 | 0.0002 | 0.3258 | |
|
| 48.0 | 7104 | 0.0002 | 0.3252 | |
|
| 49.0 | 7252 | 0.0002 | 0.3233 | |
|
| 50.0 | 7400 | 0.0002 | 0.3234 | |
|
| 0.0135 | 1 | 0.0002 | - | |
|
| 1.0 | 74 | 0.0002 | - | |
|
| 0.0068 | 1 | 0.0002 | - | |
|
| 1.0 | 148 | 0.0002 | 0.3036 | |
|
| 2.0 | 296 | 0.0002 | 0.3555 | |
|
| 3.0 | 444 | 0.0002 | 0.3331 | |
|
| 4.0 | 592 | 0.0002 | 0.3086 | |
|
| 5.0 | 740 | 0.0002 | 0.3036 | |
|
| 6.0 | 888 | 0.0002 | 0.3217 | |
|
| 7.0 | 1036 | 0.0002 | 0.3416 | |
|
| 8.0 | 1184 | 0.0002 | 0.3309 | |
|
| 9.0 | 1332 | 0.0002 | 0.3424 | |
|
| 10.0 | 1480 | 0.0003 | 0.3655 | |
|
| 11.0 | 1628 | 0.0002 | 0.3042 | |
|
| 12.0 | 1776 | 0.0019 | 0.326 | |
|
| 13.0 | 1924 | 0.0002 | 0.3161 | |
|
| 14.0 | 2072 | 0.0002 | 0.3286 | |
|
| 15.0 | 2220 | 0.0002 | 0.3563 | |
|
| 16.0 | 2368 | 0.0002 | 0.326 | |
|
| 17.0 | 2516 | 0.0002 | 0.3114 | |
|
| 18.0 | 2664 | 0.0002 | 0.3366 | |
|
| 19.0 | 2812 | 0.0002 | 0.329 | |
|
| 20.0 | 2960 | 0.0002 | 0.3217 | |
|
| 21.0 | 3108 | 0.0002 | 0.325 | |
|
| 22.0 | 3256 | 0.0002 | 0.3243 | |
|
| 23.0 | 3404 | 0.0002 | 0.3341 | |
|
| 24.0 | 3552 | 0.0002 | 0.3237 | |
|
| 25.0 | 3700 | 0.0002 | 0.3433 | |
|
| 26.0 | 3848 | 0.0002 | 0.3196 | |
|
| 27.0 | 3996 | 0.0001 | 0.3372 | |
|
| 28.0 | 4144 | 0.0001 | 0.3191 | |
|
| 29.0 | 4292 | 0.0001 | 0.328 | |
|
| 30.0 | 4440 | 0.0002 | 0.3416 | |
|
| 31.0 | 4588 | 0.0002 | 0.3132 | |
|
| 32.0 | 4736 | 0.0002 | 0.3429 | |
|
| 33.0 | 4884 | 0.0002 | 0.336 | |
|
| 34.0 | 5032 | 0.0002 | 0.3507 | |
|
| 35.0 | 5180 | 0.0001 | 0.3483 | |
|
| 36.0 | 5328 | 0.0002 | 0.3325 | |
|
| 37.0 | 5476 | 0.0001 | 0.3406 | |
|
| 38.0 | 5624 | 0.0003 | 0.3538 | |
|
| 39.0 | 5772 | 0.0002 | 0.3422 | |
|
| 40.0 | 5920 | 0.0002 | 0.3359 | |
|
| 41.0 | 6068 | 0.0002 | 0.3252 | |
|
| 42.0 | 6216 | 0.0002 | 0.326 | |
|
| 43.0 | 6364 | 0.0002 | 0.3613 | |
|
| 44.0 | 6512 | 0.0001 | 0.332 | |
|
| 45.0 | 6660 | 0.0002 | 0.3295 | |
|
| 46.0 | 6808 | 0.0002 | 0.3265 | |
|
| 47.0 | 6956 | 0.0002 | 0.2982 | |
|
| 48.0 | 7104 | 0.0002 | 0.3017 | |
|
| 49.0 | 7252 | 0.0001 | 0.309 | |
|
| 50.0 | 7400 | 0.0001 | 0.3199 | |
|
| 51.0 | 7548 | 0.0001 | 0.325 | |
|
| 52.0 | 7696 | 0.0002 | 0.3222 | |
|
| 53.0 | 7844 | 0.0001 | 0.3189 | |
|
| 54.0 | 7992 | 0.0001 | 0.3329 | |
|
| 55.0 | 8140 | 0.0001 | 0.3272 | |
|
| 56.0 | 8288 | 0.0001 | 0.3292 | |
|
| 57.0 | 8436 | 0.0001 | 0.3283 | |
|
| 58.0 | 8584 | 0.0001 | 0.3301 | |
|
| 59.0 | 8732 | 0.0001 | 0.3334 | |
|
| 60.0 | 8880 | 0.0001 | 0.3144 | |
|
| 61.0 | 9028 | 0.0002 | 0.3487 | |
|
| 62.0 | 9176 | 0.0002 | 0.3602 | |
|
| **63.0** | **9324** | **0.0001** | **0.3056** | |
|
| 64.0 | 9472 | 0.0001 | 0.3415 | |
|
| 65.0 | 9620 | 0.0002 | 0.3299 | |
|
| 66.0 | 9768 | 0.0001 | 0.3254 | |
|
| 67.0 | 9916 | 0.0001 | 0.3396 | |
|
| 68.0 | 10064 | 0.0001 | 0.3501 | |
|
| 69.0 | 10212 | 0.0001 | 0.3275 | |
|
| 70.0 | 10360 | 0.0001 | 0.34 | |
|
| 71.0 | 10508 | 0.0001 | 0.3351 | |
|
| 72.0 | 10656 | 0.0001 | 0.3367 | |
|
| 73.0 | 10804 | 0.0001 | 0.3548 | |
|
| 74.0 | 10952 | 0.0001 | 0.33 | |
|
| 75.0 | 11100 | 0.0001 | 0.3259 | |
|
| 76.0 | 11248 | 0.0002 | 0.3283 | |
|
| 77.0 | 11396 | 0.0001 | 0.3214 | |
|
| 78.0 | 11544 | 0.0001 | 0.324 | |
|
| 79.0 | 11692 | 0.0001 | 0.3247 | |
|
| 80.0 | 11840 | 0.0001 | 0.3347 | |
|
| 81.0 | 11988 | 0.0001 | 0.3292 | |
|
| 82.0 | 12136 | 0.0002 | 0.3568 | |
|
| 83.0 | 12284 | 0.0001 | 0.324 | |
|
| 84.0 | 12432 | 0.0001 | 0.3245 | |
|
| 85.0 | 12580 | 0.0001 | 0.3368 | |
|
| 86.0 | 12728 | 0.0001 | 0.3372 | |
|
| 87.0 | 12876 | 0.0001 | 0.3432 | |
|
| 88.0 | 13024 | 0.0001 | 0.3048 | |
|
| 89.0 | 13172 | 0.0001 | 0.3395 | |
|
| 90.0 | 13320 | 0.0001 | 0.3204 | |
|
| 91.0 | 13468 | 0.0001 | 0.3122 | |
|
| 92.0 | 13616 | 0.0001 | 0.3372 | |
|
| 93.0 | 13764 | 0.0001 | 0.3306 | |
|
| 94.0 | 13912 | 0.0001 | 0.3362 | |
|
| 95.0 | 14060 | 0.0001 | 0.3386 | |
|
| 96.0 | 14208 | 0.0001 | 0.3198 | |
|
| 97.0 | 14356 | 0.0001 | 0.3176 | |
|
| 98.0 | 14504 | 0.0001 | 0.3604 | |
|
| 99.0 | 14652 | 0.0001 | 0.3507 | |
|
| 100.0 | 14800 | 0.0001 | 0.3272 | |
|
| 0.0023 | 1 | 0.0001 | - | |
|
| 1.0 | 444 | 0.0002 | 0.3295 | |
|
| 2.0 | 888 | 0.0001 | 0.3144 | |
|
| 3.0 | 1332 | 0.0001 | 0.3213 | |
|
| 4.0 | 1776 | 0.0001 | 0.3362 | |
|
| 5.0 | 2220 | 0.0001 | 0.3398 | |
|
| 6.0 | 2664 | 0.0001 | 0.3385 | |
|
| 7.0 | 3108 | 0.0002 | 0.3406 | |
|
| 8.0 | 3552 | 0.0001 | 0.3253 | |
|
| 9.0 | 3996 | 0.0001 | 0.3253 | |
|
| 10.0 | 4440 | 0.0001 | 0.3119 | |
|
| 11.0 | 4884 | 0.0001 | 0.3204 | |
|
| 12.0 | 5328 | 0.0001 | 0.3387 | |
|
| 13.0 | 5772 | 0.0001 | 0.3387 | |
|
| 14.0 | 6216 | 0.0001 | 0.3584 | |
|
| 15.0 | 6660 | 0.0001 | 0.3548 | |
|
| 16.0 | 7104 | 0.0001 | 0.3314 | |
|
| 17.0 | 7548 | 0.0001 | 0.3335 | |
|
| 18.0 | 7992 | 0.0001 | 0.3325 | |
|
| 19.0 | 8436 | 0.0001 | 0.3545 | |
|
| 20.0 | 8880 | 0.0001 | 0.3456 | |
|
| **21.0** | **9324** | **0.0001** | **0.3532** | |
|
| 22.0 | 9768 | 0.0001 | 0.3524 | |
|
| 23.0 | 10212 | 0.0001 | 0.352 | |
|
| 24.0 | 10656 | 0.0001 | 0.3502 | |
|
| 25.0 | 11100 | 0.0 | 0.3275 | |
|
| 0.0034 | 1 | 0.0001 | - | |
|
| 1.0 | 296 | 0.0001 | 0.3209 | |
|
| 2.0 | 592 | 0.0001 | 0.3265 | |
|
| 3.0 | 888 | 0.0001 | 0.3414 | |
|
| 4.0 | 1184 | 0.0001 | 0.3314 | |
|
| 5.0 | 1480 | 0.0002 | 0.3498 | |
|
| 6.0 | 1776 | 0.0001 | 0.337 | |
|
| 7.0 | 2072 | 0.0001 | 0.3347 | |
|
| 8.0 | 2368 | 0.0001 | 0.3494 | |
|
| 9.0 | 2664 | 0.0001 | 0.3326 | |
|
| 10.0 | 2960 | 0.0001 | 0.3259 | |
|
| 11.0 | 3256 | 0.0002 | 0.3443 | |
|
| 12.0 | 3552 | 0.0001 | 0.3431 | |
|
| 13.0 | 3848 | 0.0001 | 0.324 | |
|
| 14.0 | 4144 | 0.0001 | 0.3339 | |
|
| 15.0 | 4440 | 0.0001 | 0.3255 | |
|
| 16.0 | 4736 | 0.0001 | 0.3379 | |
|
| 17.0 | 5032 | 0.0001 | 0.3285 | |
|
| 18.0 | 5328 | 0.0001 | 0.3362 | |
|
| 19.0 | 5624 | 0.0001 | 0.3319 | |
|
| 20.0 | 5920 | 0.0001 | 0.3456 | |
|
| 21.0 | 6216 | 0.0001 | 0.329 | |
|
| 22.0 | 6512 | 0.0001 | 0.3386 | |
|
| 23.0 | 6808 | 0.0001 | 0.3278 | |
|
| 24.0 | 7104 | 0.0001 | 0.3078 | |
|
| 25.0 | 7400 | 0.0001 | 0.3155 | |
|
| 0.0068 | 1 | 0.0001 | - | |
|
| 1.0 | 148 | 0.0001 | 0.3225 | |
|
| 2.0 | 296 | 0.0001 | 0.3526 | |
|
| 3.0 | 444 | 0.0001 | 0.3265 | |
|
| 4.0 | 592 | 0.0001 | 0.3206 | |
|
| 5.0 | 740 | 0.0001 | 0.3126 | |
|
| 6.0 | 888 | 0.0001 | 0.3306 | |
|
| 7.0 | 1036 | 0.0001 | 0.3189 | |
|
| 8.0 | 1184 | 0.0001 | 0.3246 | |
|
| 9.0 | 1332 | 0.0001 | 0.3346 | |
|
| 10.0 | 1480 | 0.0001 | 0.3528 | |
|
| 11.0 | 1628 | 0.0001 | 0.3204 | |
|
| 12.0 | 1776 | 0.0001 | 0.34 | |
|
| 13.0 | 1924 | 0.0001 | 0.3291 | |
|
| 14.0 | 2072 | 0.0001 | 0.3444 | |
|
| 15.0 | 2220 | 0.0001 | 0.339 | |
|
| 16.0 | 2368 | 0.0001 | 0.3533 | |
|
| 17.0 | 2516 | 0.0001 | 0.3288 | |
|
| 18.0 | 2664 | 0.0001 | 0.3475 | |
|
| 19.0 | 2812 | 0.0001 | 0.3464 | |
|
| 20.0 | 2960 | 0.0001 | 0.3351 | |
|
| 21.0 | 3108 | 0.0001 | 0.3421 | |
|
| 22.0 | 3256 | 0.0001 | 0.3351 | |
|
| 23.0 | 3404 | 0.0001 | 0.3416 | |
|
| 24.0 | 3552 | 0.0001 | 0.3414 | |
|
| 25.0 | 3700 | 0.0001 | 0.3433 | |
|
| 26.0 | 3848 | 0.0001 | 0.3339 | |
|
| 27.0 | 3996 | 0.0001 | 0.35 | |
|
| 28.0 | 4144 | 0.0001 | 0.3215 | |
|
| 29.0 | 4292 | 0.0001 | 0.3278 | |
|
| 30.0 | 4440 | 0.0001 | 0.3508 | |
|
| 31.0 | 4588 | 0.0001 | 0.3356 | |
|
| 32.0 | 4736 | 0.0001 | 0.3617 | |
|
| 33.0 | 4884 | 0.0001 | 0.3368 | |
|
| 34.0 | 5032 | 0.0001 | 0.3551 | |
|
| 35.0 | 5180 | 0.0001 | 0.3582 | |
|
| 36.0 | 5328 | 0.0001 | 0.333 | |
|
| 37.0 | 5476 | 0.0 | 0.3461 | |
|
| 38.0 | 5624 | 0.0001 | 0.3515 | |
|
| 39.0 | 5772 | 0.0001 | 0.3601 | |
|
| 40.0 | 5920 | 0.0001 | 0.347 | |
|
| 41.0 | 6068 | 0.0001 | 0.3444 | |
|
| 42.0 | 6216 | 0.0 | 0.3609 | |
|
| 43.0 | 6364 | 0.0 | 0.3432 | |
|
| 44.0 | 6512 | 0.0 | 0.3526 | |
|
| 45.0 | 6660 | 0.0 | 0.3382 | |
|
| 46.0 | 6808 | 0.0 | 0.353 | |
|
| 47.0 | 6956 | 0.0001 | 0.3374 | |
|
| 48.0 | 7104 | 0.0001 | 0.327 | |
|
| 49.0 | 7252 | 0.0001 | 0.3202 | |
|
| 50.0 | 7400 | 0.0 | 0.3386 | |
|
| 51.0 | 7548 | 0.0001 | 0.3501 | |
|
| 52.0 | 7696 | 0.0002 | 0.3341 | |
|
| 53.0 | 7844 | 0.0001 | 0.3024 | |
|
| 54.0 | 7992 | 0.0001 | 0.3456 | |
|
| 55.0 | 8140 | 0.0 | 0.3323 | |
|
| 56.0 | 8288 | 0.0 | 0.3259 | |
|
| 57.0 | 8436 | 0.0 | 0.3246 | |
|
| 58.0 | 8584 | 0.0 | 0.3341 | |
|
| 59.0 | 8732 | 0.0 | 0.3347 | |
|
| 60.0 | 8880 | 0.0 | 0.322 | |
|
| 61.0 | 9028 | 0.0001 | 0.3323 | |
|
| 62.0 | 9176 | 0.0 | 0.3471 | |
|
| **63.0** | **9324** | **0.0001** | **0.2913** | |
|
| 64.0 | 9472 | 0.0 | 0.3144 | |
|
| 65.0 | 9620 | 0.0001 | 0.3184 | |
|
| 66.0 | 9768 | 0.0 | 0.3251 | |
|
| 67.0 | 9916 | 0.0001 | 0.3342 | |
|
| 68.0 | 10064 | 0.0 | 0.3486 | |
|
| 69.0 | 10212 | 0.0 | 0.3381 | |
|
| 70.0 | 10360 | 0.0 | 0.3161 | |
|
| 71.0 | 10508 | 0.0 | 0.3036 | |
|
| 72.0 | 10656 | 0.0 | 0.3141 | |
|
| 73.0 | 10804 | 0.0 | 0.3307 | |
|
| 74.0 | 10952 | 0.0 | 0.3153 | |
|
| 75.0 | 11100 | 0.0 | 0.3016 | |
|
| 76.0 | 11248 | 0.0001 | 0.3321 | |
|
| 77.0 | 11396 | 0.0001 | 0.3194 | |
|
| 78.0 | 11544 | 0.0001 | 0.3496 | |
|
| 79.0 | 11692 | 0.0 | 0.3218 | |
|
| 80.0 | 11840 | 0.0 | 0.3251 | |
|
| 81.0 | 11988 | 0.0 | 0.3468 | |
|
| 82.0 | 12136 | 0.0 | 0.3803 | |
|
| 83.0 | 12284 | 0.0 | 0.3354 | |
|
| 84.0 | 12432 | 0.0 | 0.351 | |
|
| 85.0 | 12580 | 0.0 | 0.3231 | |
|
| 86.0 | 12728 | 0.0 | 0.3027 | |
|
| 87.0 | 12876 | 0.0 | 0.3309 | |
|
| 88.0 | 13024 | 0.0 | 0.3194 | |
|
| 89.0 | 13172 | 0.0 | 0.3611 | |
|
| 90.0 | 13320 | 0.0 | 0.3288 | |
|
| 91.0 | 13468 | 0.0 | 0.3261 | |
|
| 92.0 | 13616 | 0.0 | 0.3268 | |
|
| 93.0 | 13764 | 0.0 | 0.3433 | |
|
| 94.0 | 13912 | 0.0 | 0.3438 | |
|
| 95.0 | 14060 | 0.0 | 0.3288 | |
|
| 96.0 | 14208 | 0.0 | 0.3263 | |
|
| 97.0 | 14356 | 0.0 | 0.3331 | |
|
| 98.0 | 14504 | 0.0 | 0.3334 | |
|
| 99.0 | 14652 | 0.0 | 0.319 | |
|
| 100.0 | 14800 | 0.0 | 0.3033 | |
|
| 101.0 | 14948 | 0.0001 | 0.3051 | |
|
| 102.0 | 15096 | 0.0 | 0.3321 | |
|
| 103.0 | 15244 | 0.0 | 0.3181 | |
|
| 104.0 | 15392 | 0.0 | 0.2943 | |
|
| 105.0 | 15540 | 0.0 | 0.3137 | |
|
| 106.0 | 15688 | 0.0 | 0.3111 | |
|
| 107.0 | 15836 | 0.0 | 0.2968 | |
|
| 108.0 | 15984 | 0.0 | 0.3072 | |
|
| 109.0 | 16132 | 0.0 | 0.3154 | |
|
| 110.0 | 16280 | 0.0001 | 0.3211 | |
|
| 111.0 | 16428 | 0.0 | 0.2974 | |
|
| 112.0 | 16576 | 0.0 | 0.3057 | |
|
| 113.0 | 16724 | 0.0 | 0.296 | |
|
| 114.0 | 16872 | 0.0 | 0.3104 | |
|
| 115.0 | 17020 | 0.0 | 0.3029 | |
|
| 116.0 | 17168 | 0.0 | 0.329 | |
|
| 117.0 | 17316 | 0.0 | 0.3275 | |
|
| 118.0 | 17464 | 0.0 | 0.3343 | |
|
| 119.0 | 17612 | 0.0 | 0.3168 | |
|
| 120.0 | 17760 | 0.0 | 0.3208 | |
|
| 121.0 | 17908 | 0.0 | 0.2973 | |
|
| 122.0 | 18056 | 0.0 | 0.3121 | |
|
| 123.0 | 18204 | 0.0 | 0.3049 | |
|
| 124.0 | 18352 | 0.0 | 0.3079 | |
|
| 125.0 | 18500 | 0.0 | 0.2994 | |
|
| 126.0 | 18648 | 0.0 | 0.3189 | |
|
| 127.0 | 18796 | 0.0 | 0.3255 | |
|
| 128.0 | 18944 | 0.0 | 0.3111 | |
|
| 129.0 | 19092 | 0.0 | 0.3182 | |
|
| 130.0 | 19240 | 0.0 | 0.356 | |
|
| 131.0 | 19388 | 0.0 | 0.3299 | |
|
| 132.0 | 19536 | 0.0 | 0.3308 | |
|
| 133.0 | 19684 | 0.0 | 0.3379 | |
|
| 134.0 | 19832 | 0.0 | 0.3233 | |
|
| 135.0 | 19980 | 0.0 | 0.327 | |
|
| 136.0 | 20128 | 0.0 | 0.318 | |
|
| 137.0 | 20276 | 0.0 | 0.2937 | |
|
| 138.0 | 20424 | 0.0 | 0.3039 | |
|
| 139.0 | 20572 | 0.0 | 0.3367 | |
|
| 140.0 | 20720 | 0.0 | 0.3185 | |
|
| 141.0 | 20868 | 0.0 | 0.3441 | |
|
| 142.0 | 21016 | 0.0 | 0.3055 | |
|
| 143.0 | 21164 | 0.0 | 0.3202 | |
|
| 144.0 | 21312 | 0.0 | 0.3144 | |
|
| 145.0 | 21460 | 0.0 | 0.3304 | |
|
| 146.0 | 21608 | 0.0 | 0.3165 | |
|
| 147.0 | 21756 | 0.0 | 0.309 | |
|
| 148.0 | 21904 | 0.0 | 0.3086 | |
|
| 149.0 | 22052 | 0.0 | 0.2987 | |
|
| 150.0 | 22200 | 0.0 | 0.3198 | |
|
| 151.0 | 22348 | 0.0 | 0.3372 | |
|
| 152.0 | 22496 | 0.0 | 0.3156 | |
|
| 153.0 | 22644 | 0.0 | 0.3206 | |
|
| 154.0 | 22792 | 0.0 | 0.322 | |
|
| 155.0 | 22940 | 0.0 | 0.3445 | |
|
| 156.0 | 23088 | 0.0 | 0.3183 | |
|
| 157.0 | 23236 | 0.0 | 0.3203 | |
|
| 158.0 | 23384 | 0.0 | 0.3337 | |
|
| 159.0 | 23532 | 0.0 | 0.3245 | |
|
| 160.0 | 23680 | 0.0 | 0.3068 | |
|
| 161.0 | 23828 | 0.0 | 0.3199 | |
|
| 162.0 | 23976 | 0.0 | 0.3308 | |
|
| 163.0 | 24124 | 0.0 | 0.3446 | |
|
| 164.0 | 24272 | 0.0 | 0.341 | |
|
| 165.0 | 24420 | 0.0 | 0.3155 | |
|
| 166.0 | 24568 | 0.0 | 0.3306 | |
|
| 167.0 | 24716 | 0.0 | 0.3422 | |
|
| 168.0 | 24864 | 0.0 | 0.336 | |
|
| 169.0 | 25012 | 0.0 | 0.3271 | |
|
| 170.0 | 25160 | 0.0 | 0.3062 | |
|
| 171.0 | 25308 | 0.0 | 0.305 | |
|
| 172.0 | 25456 | 0.0 | 0.3047 | |
|
| 173.0 | 25604 | 0.0 | 0.3281 | |
|
| 174.0 | 25752 | 0.0 | 0.3059 | |
|
| 175.0 | 25900 | 0.0 | 0.2993 | |
|
| 176.0 | 26048 | 0.0 | 0.3206 | |
|
| 177.0 | 26196 | 0.0 | 0.3274 | |
|
| 178.0 | 26344 | 0.0 | 0.3249 | |
|
| 179.0 | 26492 | 0.0 | 0.3049 | |
|
| 180.0 | 26640 | 0.0 | 0.3131 | |
|
| 181.0 | 26788 | 0.0 | 0.3119 | |
|
| 182.0 | 26936 | 0.0 | 0.3457 | |
|
| 183.0 | 27084 | 0.0 | 0.3242 | |
|
| 184.0 | 27232 | 0.0 | 0.3006 | |
|
| 185.0 | 27380 | 0.0 | 0.3054 | |
|
| 186.0 | 27528 | 0.0 | 0.3135 | |
|
| 187.0 | 27676 | 0.0 | 0.3102 | |
|
| 188.0 | 27824 | 0.0 | 0.3394 | |
|
| 189.0 | 27972 | 0.0 | 0.3256 | |
|
| 190.0 | 28120 | 0.0 | 0.2973 | |
|
| 191.0 | 28268 | 0.0 | 0.3124 | |
|
| 192.0 | 28416 | 0.0 | 0.321 | |
|
| 193.0 | 28564 | 0.0 | 0.3332 | |
|
| 194.0 | 28712 | 0.0 | 0.3136 | |
|
| 195.0 | 28860 | 0.0 | 0.32 | |
|
| 196.0 | 29008 | 0.0 | 0.3486 | |
|
| 197.0 | 29156 | 0.0 | 0.3259 | |
|
| 198.0 | 29304 | 0.0 | 0.3134 | |
|
| 199.0 | 29452 | 0.0 | 0.3437 | |
|
| 200.0 | 29600 | 0.0 | 0.3029 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.3.1 |
|
- Transformers: 4.37.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.17.1 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |