JoshEe00's picture
End of training
acab533 verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-minds14-test-finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-AU
          split: train
          args: en-AU
        metrics:
          - name: Wer
            type: wer
            value: 14.926022628372499

whisper-tiny-minds14-test-finetuned

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5522
  • Wer Ortho: 15.9236
  • Wer: 14.9260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0009 15.15 500 0.4051 14.5587 13.5335
0.0003 30.3 1000 0.4404 14.8772 13.7511
0.0002 45.45 1500 0.4655 15.5596 14.4909
0.0001 60.61 2000 0.4870 15.4231 14.3168
0.0001 75.76 2500 0.5048 15.6961 14.6649
0.0 90.91 3000 0.5217 15.7871 14.7084
0.0 106.06 3500 0.5368 15.9691 14.9260
0.0 121.21 4000 0.5522 15.9236 14.9260

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2