beto-finetuned-ner

This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2248
  • Precision: 0.8403
  • Recall: 0.8557
  • F1: 0.8479
  • Accuracy: 0.9702

Model description

Este modelo está basado en BETO, que es un modelo de lenguaje preentrenado para el español similar a BERT. BETO fue entrenado inicialmente en grandes cantidades de texto en español. Posteriormente, este modelo toma la arquitectura y pesos preentrenados de BETO y los ajusta aún más en la tarea específica de Reconocimiento de Entidades Nombradas (NER) utilizando el conjunto de datos conll2002. Este modelo ajustado puede usarse para anotar automáticamente nuevos textos en español, asignando etiquetas de entidad nombradas.

How to Use

from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

tokenizer = AutoTokenizer.from_pretrained("JoshuaAAX/beto-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("JoshuaAAX/beto-finetuned-ner")


text = "La Federación nacional de cafeteros de Colombia es una entidad del estado. El primer presidente el Dr Augusto Guerra contó con el aval de la Asociación Colombiana de Aviación."


ner_pipeline= pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
ner_pipeline(text) 

Training data

Abbreviation Description
O Outside of NE
PER Person’s name
ORG Organization
LOC Location
MISC Miscellaneous

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0512 1.0 521 0.1314 0.8328 0.8562 0.8443 0.9703
0.0305 2.0 1042 0.1549 0.8318 0.8442 0.8380 0.9688
0.0193 3.0 1563 0.1498 0.8513 0.8578 0.8545 0.9708
0.0148 4.0 2084 0.1810 0.8363 0.8442 0.8403 0.9682
0.0112 5.0 2605 0.1904 0.8412 0.8529 0.8470 0.9703
0.0078 6.0 3126 0.1831 0.8364 0.8539 0.8450 0.9708
0.0058 7.0 3647 0.2060 0.8419 0.8543 0.8481 0.9701
0.0049 8.0 4168 0.2111 0.8357 0.8541 0.8448 0.9697
0.0037 9.0 4689 0.2255 0.8371 0.8504 0.8437 0.9692
0.0031 10.0 5210 0.2248 0.8403 0.8557 0.8479 0.9702

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JoshuaAAX/beto-finetuned-ner

Finetuned
(14)
this model

Dataset used to train JoshuaAAX/beto-finetuned-ner

Evaluation results