Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
base_model: NazaGara/NER-fine-tuned-BETO
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2002
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: beto-finetuned-ner
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2002
|
21 |
+
type: conll2002
|
22 |
+
config: es
|
23 |
+
split: validation
|
24 |
+
args: es
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8406680207628074
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8559283088235294
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8482295343276784
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9701989833870568
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# beto-finetuned-ner
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2247
|
48 |
+
- Precision: 0.8407
|
49 |
+
- Recall: 0.8559
|
50 |
+
- F1: 0.8482
|
51 |
+
- Accuracy: 0.9702
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0512 | 1.0 | 521 | 0.1314 | 0.8328 | 0.8562 | 0.8443 | 0.9703 |
|
83 |
+
| 0.0305 | 2.0 | 1042 | 0.1549 | 0.8320 | 0.8442 | 0.8380 | 0.9688 |
|
84 |
+
| 0.0193 | 3.0 | 1563 | 0.1498 | 0.8515 | 0.8580 | 0.8548 | 0.9708 |
|
85 |
+
| 0.0148 | 4.0 | 2084 | 0.1809 | 0.8374 | 0.8447 | 0.8410 | 0.9682 |
|
86 |
+
| 0.0112 | 5.0 | 2605 | 0.1900 | 0.8391 | 0.8518 | 0.8454 | 0.9702 |
|
87 |
+
| 0.0078 | 6.0 | 3126 | 0.1839 | 0.8361 | 0.8545 | 0.8452 | 0.9707 |
|
88 |
+
| 0.0058 | 7.0 | 3647 | 0.2060 | 0.8428 | 0.8534 | 0.8480 | 0.9702 |
|
89 |
+
| 0.0049 | 8.0 | 4168 | 0.2111 | 0.8334 | 0.8527 | 0.8429 | 0.9697 |
|
90 |
+
| 0.0037 | 9.0 | 4689 | 0.2252 | 0.8360 | 0.8502 | 0.8430 | 0.9692 |
|
91 |
+
| 0.0031 | 10.0 | 5210 | 0.2247 | 0.8407 | 0.8559 | 0.8482 | 0.9702 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.41.0
|
97 |
+
- Pytorch 2.3.0+cu121
|
98 |
+
- Datasets 2.19.1
|
99 |
+
- Tokenizers 0.19.1
|