ModernEMO-base

This model is a fine-tuned version of answerdotai/ModernBERT-base on Jsevisal/go_emotions_ekman It achieves the following results on the evaluation set:

  • Loss: 0.2224
  • F1: 0.7037
  • Roc Auc: 0.8143
  • Accuracy: 0.6226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2162 1.0 2714 0.2049 0.6920 0.7979 0.6010
0.1553 2.0 5428 0.2224 0.7037 0.8143 0.6226

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Jsevisal/ModernEMO-base-multilabel

Finetuned
(220)
this model

Datasets used to train Jsevisal/ModernEMO-base-multilabel