bert-base-uncased-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
2.3399 1.0 73 1.7462
1.799 2.0 146 1.4703
1.6353 3.0 219 1.4796
1.5464 4.0 292 1.3851
1.4697 5.0 365 1.3032
1.4146 6.0 438 1.3339
1.3677 7.0 511 1.3349
1.3345 8.0 584 1.2818
1.3053 9.0 657 1.2646
1.2886 10.0 730 1.2355
1.278 11.0 803 1.3037
1.2568 12.0 876 1.1511
1.2399 13.0 949 1.2578
1.2369 14.0 1022 1.2487
1.2165 15.0 1095 1.2581
1.2289 16.0 1168 1.2312

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.11.0+cu113
  • Datasets 2.7.1
  • Tokenizers 0.12.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.