Edit model card

Whisper large-v2, KsponSpeech Partial 5 epochs

This model is a fine-tuned version of openai/whisper-large-v2 on the KsponSpeech dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0150
  • eval_wer: 25.4322
  • eval_runtime: 1298.665
  • eval_samples_per_second: 0.689
  • eval_steps_per_second: 0.689
  • epoch: 5.07
  • step: 300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 300

Framework versions

  • Transformers 4.31.0
  • Pytorch 1.12.1+cu116
  • Datasets 2.14.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Jungwonchang/whisper_finetune_ksponspeech_partial

Finetuned
(182)
this model