Jungwonchang's picture
Update metadata with huggingface_hub
1ba2041
|
raw
history blame
2.23 kB
---
language:
- kr
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Jungwonchang/ksponspeech_partial
metrics:
- wer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper large-v2, KsponSpeech Partial 10 epochs
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: KsponSpeech
type: Jungwonchang/ksponspeech_partial
config: eval
split: test
args: eval
metrics:
- type: wer
value: 25.714073744343054
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Jungwonchang/ksponspeech
type: Jungwonchang/ksponspeech
config: eval
split: test
metrics:
- type: wer
value: 25.54
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large-v2, KsponSpeech Partial 10 epochs
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the KsponSpeech dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0194
- Wer: 25.7141
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 300
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2225 | 1.15 | 100 | 0.1394 | 27.9769 |
| 0.0507 | 3.11 | 200 | 0.0449 | 14.9640 |
| 0.0114 | 5.07 | 300 | 0.0194 | 25.7141 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.12.1+cu116
- Datasets 2.14.0
- Tokenizers 0.12.1