metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Jungwonchang/spgispeech_xs
base_model: openai/whisper-medium.en
model-index:
- name: openai/whisper-medium.en, all the parameters updated for 5 epochs
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Test set for spgispeech
type: kensho/spgispeech
config: test
split: test
metrics:
- type: wer
value: 6.67
name: WER
- type: cer
value: 1.98
name: CER
openai/whisper-medium.en, all the parameters updated for 5 epochs
This model is a fine-tuned version of openai/whisper-medium.en on the 2 hour dataset of SPGIspeech(custom dataset) dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 120
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.15.0