File size: 15,571 Bytes
f14815e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f238048a0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f238047b940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689853149209632093, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkBURv50yH79Ww5K/LiY3P8eYxb9O5dK/wre/PztUKr+dpoS/OKjqvv73MT8VahW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4388423  0.03267165 0.5649473 ]\n [0.4388423  0.03267165 0.5649473 ]\n [0.4388423  0.03267165 0.5649473 ]\n [0.4388423  0.03267165 0.5649473 ]]", "desired_goal": "[[-0.56673527 -0.62186605 -1.1465862 ]\n [ 0.7154263  -1.5437249  -1.6476228 ]\n [ 1.4977953  -0.66534775 -1.0363346 ]\n [-0.45831466  0.6951903  -0.58364993]]", "observation": "[[ 0.4388423   0.03267165  0.5649473  -0.00330538  0.00350821 -0.00755057]\n [ 0.4388423   0.03267165  0.5649473  -0.00330538  0.00350821 -0.00755057]\n [ 0.4388423   0.03267165  0.5649473  -0.00330538  0.00350821 -0.00755057]\n [ 0.4388423   0.03267165  0.5649473  -0.00330538  0.00350821 -0.00755057]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlSz+vVTuGL6R6Y4+uyO9PeTOVL2kv8k9qS+YO/jtij3TEwE93862vXYpgT16+I8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.12410847 -0.14934665  0.27912572]\n [ 0.09235331 -0.05195512  0.09851006]\n [ 0.00464435  0.0678367   0.03151305]\n [-0.08926176  0.06306736  0.2811926 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0NVW7C87C8CUhpRSlIwBbJRLMowBdJRHQKUwyGvfTCt1fZQoaAZoCWgPQwhrgxPRr40DwJSGlFKUaBVLMmgWR0ClMGz7di2EdX2UKGgGaAloD0MIpp2ayw1mB8CUhpRSlGgVSzJoFkdApTAUH2RJVnV9lChoBmgJaA9DCEXxKmubIgjAlIaUUpRoFUsyaBZHQKUvuZlWfbt1fZQoaAZoCWgPQwhPAptz8EwDwJSGlFKUaBVLMmgWR0ClMj9BBzFNdX2UKGgGaAloD0MIh1ClZg9UBMCUhpRSlGgVSzJoFkdApTHkNe+mFnV9lChoBmgJaA9DCOQSRx6I7AXAlIaUUpRoFUsyaBZHQKUxi4Cp3ot1fZQoaAZoCWgPQwgVPIVcqUcPwJSGlFKUaBVLMmgWR0ClMTE2xY7rdX2UKGgGaAloD0MIBrmLMEV5AcCUhpRSlGgVSzJoFkdApTPppJwsG3V9lChoBmgJaA9DCKBU+3Q8hgLAlIaUUpRoFUsyaBZHQKUzj5mAbyZ1fZQoaAZoCWgPQwgn2H+dm7YUwJSGlFKUaBVLMmgWR0ClMzbRnezldX2UKGgGaAloD0MIiGh0B7GzA8CUhpRSlGgVSzJoFkdApTLcbvPTonV9lChoBmgJaA9DCPsgy4KJ/wPAlIaUUpRoFUsyaBZHQKU1EpiI+GJ1fZQoaAZoCWgPQwjwUBToE7kKwJSGlFKUaBVLMmgWR0ClNLaZpi7TdX2UKGgGaAloD0MIkpT0MLRaAsCUhpRSlGgVSzJoFkdApTRdS4vvjXV9lChoBmgJaA9DCPhtiPGatwvAlIaUUpRoFUsyaBZHQKU0AkOZssR1fZQoaAZoCWgPQwhGe7yQDq8LwJSGlFKUaBVLMmgWR0ClNfZIH1OCdX2UKGgGaAloD0MIKgMHtHTlBsCUhpRSlGgVSzJoFkdApTWaV6eGwnV9lChoBmgJaA9DCGxblNkg8wPAlIaUUpRoFUsyaBZHQKU1QPwNLDh1fZQoaAZoCWgPQwjt8NdkjRoJwJSGlFKUaBVLMmgWR0ClNOYTCcgAdX2UKGgGaAloD0MIhuelYmMeBcCUhpRSlGgVSzJoFkdApTbV6HCXQnV9lChoBmgJaA9DCP/PYb68AAvAlIaUUpRoFUsyaBZHQKU2egTRIBl1fZQoaAZoCWgPQwhHqu/8ouQHwJSGlFKUaBVLMmgWR0ClNiCnHeabdX2UKGgGaAloD0MIYtnMIakVEcCUhpRSlGgVSzJoFkdApTXFuejEenV9lChoBmgJaA9DCEEsmzkkRRDAlIaUUpRoFUsyaBZHQKU3ujRlYlp1fZQoaAZoCWgPQwj7rZ0oCekFwJSGlFKUaBVLMmgWR0ClN14xUNrkdX2UKGgGaAloD0MIeVxUi4iCCcCUhpRSlGgVSzJoFkdApTcEySFGonV9lChoBmgJaA9DCOF9VS5UXgXAlIaUUpRoFUsyaBZHQKU2qbkwN9Z1fZQoaAZoCWgPQwjKwWwCDMsDwJSGlFKUaBVLMmgWR0ClOKk+otL+dX2UKGgGaAloD0MIXmkZqfdUBsCUhpRSlGgVSzJoFkdApThNcQiA2HV9lChoBmgJaA9DCOv+sRAdogPAlIaUUpRoFUsyaBZHQKU39HLA57x1fZQoaAZoCWgPQwj8x0J0CDwLwJSGlFKUaBVLMmgWR0ClN5mVJL/TdX2UKGgGaAloD0MIrrzkf/JXAcCUhpRSlGgVSzJoFkdApTmG0LMLW3V9lChoBmgJaA9DCBVzEHS0av6/lIaUUpRoFUsyaBZHQKU5KubqhUR1fZQoaAZoCWgPQwjICKhwBMkQwJSGlFKUaBVLMmgWR0ClONGdqcmTdX2UKGgGaAloD0MIk3GMZI/QCsCUhpRSlGgVSzJoFkdApTh2rjo6jnV9lChoBmgJaA9DCNZSQNr/oAjAlIaUUpRoFUsyaBZHQKU6dbg0j1R1fZQoaAZoCWgPQwitNZTai4gFwJSGlFKUaBVLMmgWR0ClOhoMKCxvdX2UKGgGaAloD0MI+n/VkSNd97+UhpRSlGgVSzJoFkdApTnBLytmtnV9lChoBmgJaA9DCFkV4Saj6g3AlIaUUpRoFUsyaBZHQKU5ZmAbyYp1fZQoaAZoCWgPQwhYU1kUdnEHwJSGlFKUaBVLMmgWR0ClO1tQbdaddX2UKGgGaAloD0MIHt/eNehLB8CUhpRSlGgVSzJoFkdApTr/YjB2wHV9lChoBmgJaA9DCEFF1a90vg3AlIaUUpRoFUsyaBZHQKU6pkvK2a51fZQoaAZoCWgPQwiwWMNF7ukLwJSGlFKUaBVLMmgWR0ClOkts3yZsdX2UKGgGaAloD0MI2IFzRpSWBcCUhpRSlGgVSzJoFkdApTw5iG34K3V9lChoBmgJaA9DCAeaz7nblQXAlIaUUpRoFUsyaBZHQKU73cwg1WN1fZQoaAZoCWgPQwgWS5F8JbAMwJSGlFKUaBVLMmgWR0ClO4Rsl9jPdX2UKGgGaAloD0MIOdGuQsrPCcCUhpRSlGgVSzJoFkdApTspm03OwHV9lChoBmgJaA9DCGjon+BixQTAlIaUUpRoFUsyaBZHQKU9FdCVryl1fZQoaAZoCWgPQwgyk6gXfJoEwJSGlFKUaBVLMmgWR0ClPLncclw+dX2UKGgGaAloD0MIgVmhSPcTCMCUhpRSlGgVSzJoFkdApTxgg1WKdnV9lChoBmgJaA9DCB+/t+nP/gjAlIaUUpRoFUsyaBZHQKU8BYoRZlp1fZQoaAZoCWgPQwiOeR1xyOYPwJSGlFKUaBVLMmgWR0ClPgAckt2+dX2UKGgGaAloD0MIzvv/OGGCAcCUhpRSlGgVSzJoFkdApT2kPxx1gnV9lChoBmgJaA9DCGmOrPwyOAPAlIaUUpRoFUsyaBZHQKU9SwMYuTR1fZQoaAZoCWgPQwjZfFwbKmYGwJSGlFKUaBVLMmgWR0ClPPArxy4ndX2UKGgGaAloD0MIQZ3y6EZYAsCUhpRSlGgVSzJoFkdApT7c9yLhrHV9lChoBmgJaA9DCPqZet0isA3AlIaUUpRoFUsyaBZHQKU+gQRPGhp1fZQoaAZoCWgPQwgn+nyUEbcJwJSGlFKUaBVLMmgWR0ClPietr9EUdX2UKGgGaAloD0MIZvm6DP8JCcCUhpRSlGgVSzJoFkdApT3Mona37XV9lChoBmgJaA9DCG0eh8H8FQTAlIaUUpRoFUsyaBZHQKU/uvFm4Al1fZQoaAZoCWgPQwg3xeOiWsQFwJSGlFKUaBVLMmgWR0ClP1/HPu5SdX2UKGgGaAloD0MIjJ/GvfntCMCUhpRSlGgVSzJoFkdApT8HeizsyHV9lChoBmgJaA9DCEYiNIKNywPAlIaUUpRoFUsyaBZHQKU+rNgSey11fZQoaAZoCWgPQwhcHQBxV2/+v5SGlFKUaBVLMmgWR0ClQJx+z+m4dX2UKGgGaAloD0MIV89J7xu/C8CUhpRSlGgVSzJoFkdApUBAwyqMnHV9lChoBmgJaA9DCE0QdR+AVATAlIaUUpRoFUsyaBZHQKU/53W4EwF1fZQoaAZoCWgPQwhzvALRk7IKwJSGlFKUaBVLMmgWR0ClP4xqO939dX2UKGgGaAloD0MI8DUEx2WcAsCUhpRSlGgVSzJoFkdApUGYk3S8anV9lChoBmgJaA9DCMdjBirjnwXAlIaUUpRoFUsyaBZHQKVBPR5TqB51fZQoaAZoCWgPQwi8JM6KqGkCwJSGlFKUaBVLMmgWR0ClQOPMSsbOdX2UKGgGaAloD0MIaVIKur1EC8CUhpRSlGgVSzJoFkdApUCJHoX9BXV9lChoBmgJaA9DCL3EWKZfwgnAlIaUUpRoFUsyaBZHQKVCca3qiXZ1fZQoaAZoCWgPQwjV6NUApQECwJSGlFKUaBVLMmgWR0ClQhXCbc46dX2UKGgGaAloD0MIUaOQZFaPDsCUhpRSlGgVSzJoFkdApUG8V8CxNnV9lChoBmgJaA9DCKtCA7FsRgLAlIaUUpRoFUsyaBZHQKVBYYoAn2J1fZQoaAZoCWgPQwh1lIPZBPgFwJSGlFKUaBVLMmgWR0ClQ0pyp71JdX2UKGgGaAloD0MIPzifOlZJBMCUhpRSlGgVSzJoFkdApULufkFOf3V9lChoBmgJaA9DCBcNGY9SaQXAlIaUUpRoFUsyaBZHQKVClUBnzxx1fZQoaAZoCWgPQwjbheY6jRQNwJSGlFKUaBVLMmgWR0ClQjo371qWdX2UKGgGaAloD0MIzlSIR+Ll97+UhpRSlGgVSzJoFkdApUQs/bCaZ3V9lChoBmgJaA9DCH47iQj/ggbAlIaUUpRoFUsyaBZHQKVD0QpWmxd1fZQoaAZoCWgPQwjptdlYiXkAwJSGlFKUaBVLMmgWR0ClQ3esgdOqdX2UKGgGaAloD0MI3JvfMNHABsCUhpRSlGgVSzJoFkdApUMcqvvBrXV9lChoBmgJaA9DCO1mRj8azgfAlIaUUpRoFUsyaBZHQKVFLW7OE/V1fZQoaAZoCWgPQwg/UkSGVTwIwJSGlFKUaBVLMmgWR0ClRNGY0EX+dX2UKGgGaAloD0MIUI2XbhIjDsCUhpRSlGgVSzJoFkdApUR4UnG83HV9lChoBmgJaA9DCPj8MEJ4NADAlIaUUpRoFUsyaBZHQKVEHlZowmF1fZQoaAZoCWgPQwire2Rz1dwLwJSGlFKUaBVLMmgWR0ClRhSL61stdX2UKGgGaAloD0MIKld4l4uYBMCUhpRSlGgVSzJoFkdApUW4mNR3vHV9lChoBmgJaA9DCD52Fygp8Pu/lIaUUpRoFUsyaBZHQKVFX7WuoxZ1fZQoaAZoCWgPQwgbnfNTHAcHwJSGlFKUaBVLMmgWR0ClRQSmygPFdX2UKGgGaAloD0MI36Y/+5ECAMCUhpRSlGgVSzJoFkdApUbxd+ocaXV9lChoBmgJaA9DCK1p3nGKzgTAlIaUUpRoFUsyaBZHQKVGlY287IV1fZQoaAZoCWgPQwjAIr9+iA0DwJSGlFKUaBVLMmgWR0ClRjw+UyHmdX2UKGgGaAloD0MIRpp4B3gyCcCUhpRSlGgVSzJoFkdApUXhO8Cgb3V9lChoBmgJaA9DCN+nqtBA7AHAlIaUUpRoFUsyaBZHQKVHy2wV0tB1fZQoaAZoCWgPQwiCVfXyO43/v5SGlFKUaBVLMmgWR0ClR29qUNaydX2UKGgGaAloD0MILLmKxW9qBMCUhpRSlGgVSzJoFkdApUcWAAhjfHV9lChoBmgJaA9DCELuIkxRrgLAlIaUUpRoFUsyaBZHQKVGuvmHP/t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}