THaLLE: Text Hyperlocally Augmented Large Language Extension
❗NOTICE❗: KBTG-Labs/THaLLE-0.1-7B-fa
is a WIP model checkpoint distributed for reproducing results in our Technical Report.
Training details
This model is a Qwen2-7B-Instruct fine-tuned on our Internal CFA Mock Exam 2009-2019 containing 9,426 Questions using LoRA.
Vocab Config Patching
Prior to training, we patched Qwen/Qwen2-7B-Instruct's tokenizer_config.json
bos_token
field from null
to the start token "<|im_start|>"
.
{
...
"bos_token": "<|im_start|>"
...
}
Results
For more details see our Technical Report.
Model | Internal 2020 | Internal 2024 | Flare CFA* |
---|---|---|---|
APIs | |||
gpt-3.5-turbo-0125 |
0.5458 | 0.5027 | 0.6366 |
gemini-1.5-flash-001 |
0.6271 | 0.6278 | 0.7355 |
gemini-1.5-pro-001 |
0.6780 | 0.6444 | 0.7829 |
gpt-4o-2024-05-13 |
0.8000 | 0.8055 | 0.8789 |
HF models | |||
"meta-llama/Llama-2-7b-chat-hf" |
0.3774 | 0.3639 | 0.4264 |
"google/gemma-7b-it" |
0.5107 | 0.5333 | 0.6027 |
"meta-llama/Meta-Llama-3-8B-Instruct" |
0.5424 | 0.5222 | 0.6386 |
"Qwen/Qwen2-7B-Instruct" |
0.5740 | 0.5583 | 0.6831 |
"KBTG-Labs/THaLLE-0.1-7B-fa" |
0.6678 | 0.6500 | 0.7171 |
[*] Flare CFA is "ChanceFocus/flare-cfa"
Usage
Requirements
Since KBTG-Labs/THaLLE-0.1-7B-fa
is a fine-tuned of Qwen2-7B-Instruct you will need to install transformers>=4.37.0
.
Reproducing results
Running the script below should give you this output:
Progress: 1032/1032 | Correct: 740 (71.71%)
import re
from typing import Literal, Optional
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_ID: str = "KBTG-Labs/THaLLE-0.1-7B-fa"
SYSTEM_PROMPT: str = """You are a CFA (chartered financial analyst) taking a test to evaluate your knowledge of finance. You will be given a question along with three possible answers (A, B, and C).
Indicate the correct answer (A, B, or C)."""
QUESTION_TEMPLATE: str = """Question:
{question}
A. {choice_a}
B. {choice_b}
C. {choice_c}"""
def format_flare_cfa(text: str) -> dict[str, str]:
text = re.sub(r"\s+", " ", text)
pattern = r"Q:\s*(.*?),\s*CHOICES:\s*A:\s*(.*?),\s*B:\s*(.*?),\s*C:\s*(.*)"
match = re.search(pattern, text)
if match:
question, choice_a, choice_b, choice_c = match.groups()
return {
"question": question.strip(),
"choice_a": choice_a.strip(),
"choice_b": choice_b.strip(),
"choice_c": choice_c.strip(),
}
else:
raise ValueError("Input text does not match the expected format.")
def load_benchmark_dataset() -> list[dict[str, str]]:
dataset = load_dataset("ChanceFocus/flare-cfa")["test"]
prepared_dataset = []
for d in dataset:
entry = format_flare_cfa(d["text"])
entry["answer"] = str(d["answer"]).upper()
prepared_dataset.append(entry)
return prepared_dataset
def extract_choice(
response_text: str, choice_a: str, choice_b: str, choice_c: str
) -> Optional[Literal["A", "B", "C"]]:
def clean(text: str) -> str:
return text.replace("–", "-").strip().replace("\n", "")
find_choice = re.findall(
r"([T|t]he correct answer is[.|:]? [ABC]|[A|a]nswer[.|:]?[is]?\W+?\n?[ABC]\s)",
response_text,
)
if find_choice:
return clean(find_choice[0])[-1]
if len(response_text) == 1 and response_text in "ABC":
return response_text
find_choice = re.findall(r"[ABC][.]\s?", response_text)
if find_choice:
return find_choice[0][0]
choice = {"A": choice_a, "B": choice_b, "C": choice_c}
for ch, content in choice.items():
if clean(content) in clean(response_text):
return ch
return None
def inference(messages: list[dict[str, str]], model, tokenizer) -> str:
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=768,
do_sample=False,
temperature=None,
top_p=None,
top_k=None,
)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
def run_benchmark(dataset: list[dict[str, str]], model, tokenizer):
total_correct = 0
for i, problem in enumerate(dataset, start=1):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": QUESTION_TEMPLATE.format(**problem)},
]
output_text = inference(messages, model, tokenizer)
prediction = extract_choice(
output_text,
problem["choice_a"],
problem["choice_b"],
problem["choice_c"],
)
correct = problem["answer"] == prediction
total_correct += correct
percent = total_correct / i * 100
print(
f"Progress: {i}/{len(dataset)} | Correct: {total_correct} ({percent:.2f}%)",
end="\r",
)
if __name__ == "__main__":
dataset = load_benchmark_dataset()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
)
run_benchmark(dataset, model, tokenizer)
Citation
If you find our work useful, please cite:
@misc{labs2024thalle,
title={THaLLE: Text Hyperlocally Augmented Large Language Extension -- Technical Report},
author={KBTG Labs and Danupat Khamnuansin and Atthakorn Petchsod and Anuruth Lertpiya and Pornchanan Balee and Thanawat Lodkaew and Tawunrat Chalothorn and Thadpong Pongthawornkamol and Monchai Lertsutthiwong},
year={2024},
eprint={2406.07505},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 140
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.