Edit model card

NOTE: THIS IS THE RANDOM SAMPLING VERSION WEPO. DOM TREE DISTANCE-BASED VERSION WILL BE RELEASED SOON.

Below is the reference code for inference. First load the tokenizer and the model.

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("KLGR123/WEPO-gemma-2b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("KLGR123/WEPO-gemma-2b", trust_remote_code=True).to('cuda:0')

Run a test-demo with random input.

messages = [
    {"role": "system", "content": "You are a web navigation intelligence who interacts with webpage environments to achieve human user intent."},
    {"role": "user", "content": "Who are you?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=128,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.2,
    top_p=0.9,
)

response = outputs[0][input_ids.shape[-1]:]
output = tokenizer.decode(response, skip_special_tokens=True)
output
Downloads last month
11
Safetensors
Model size
2.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.