metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deBert-finetuned-ner-v1
results: []
deBert-finetuned-ner-v1
This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0010
- Precision: 0.9674
- Recall: 0.9784
- F1: 0.9728
- Accuracy: 0.9997
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.037 | 1.0 | 950 | 0.0017 | 0.9350 | 0.9664 | 0.9505 | 0.9995 |
0.0013 | 2.0 | 1900 | 0.0011 | 0.9644 | 0.9758 | 0.9701 | 0.9996 |
0.0006 | 3.0 | 2850 | 0.0010 | 0.9674 | 0.9784 | 0.9728 | 0.9997 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2