distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0604
- Precision: 0.9271
- Recall: 0.9381
- F1: 0.9326
- Accuracy: 0.9836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2324 | 1.0 | 878 | 0.0688 | 0.9146 | 0.9264 | 0.9205 | 0.9816 |
0.0517 | 2.0 | 1756 | 0.0620 | 0.9207 | 0.9329 | 0.9268 | 0.9829 |
0.0301 | 3.0 | 2634 | 0.0604 | 0.9271 | 0.9381 | 0.9326 | 0.9836 |
Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.