Kamaljp's picture
End of training
5c3e37b verified
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.921011931064958
- name: Recall
type: recall
value: 0.93265465935787
- name: F1
type: f1
value: 0.9267967316991829
- name: Accuracy
type: accuracy
value: 0.982826822565015
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0610
- Precision: 0.9210
- Recall: 0.9327
- F1: 0.9268
- Accuracy: 0.9828
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.248 | 1.0 | 878 | 0.0676 | 0.9021 | 0.9205 | 0.9112 | 0.9805 |
| 0.0508 | 2.0 | 1756 | 0.0614 | 0.9208 | 0.9289 | 0.9248 | 0.9825 |
| 0.0308 | 3.0 | 2634 | 0.0610 | 0.9210 | 0.9327 | 0.9268 | 0.9828 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cpu
- Datasets 2.1.0
- Tokenizers 0.15.1