File size: 7,695 Bytes
35d9624
 
 
3e86372
 
 
 
 
 
 
35d9624
3e86372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038c683
35d9624
038c683
4b15582
3e86372
 
 
 
 
 
 
35d9624
3e86372
 
 
 
 
35d9624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import time
import json
from pydantic import BaseModel
import transformers
from transformers import pipeline
import torch
from torch import nn
import torch.nn.functional as F
from torch.cuda.amp import custom_fwd, custom_bwd
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
from loguru import logger
from typing import Dict, List, Any


# ---------------------> Converting the model to 8 bits <------------------- #

class FrozenBNBLinear(nn.Module):
    def __init__(self, weight, absmax, code, bias=None):
        assert isinstance(bias, nn.Parameter) or bias is None
        super().__init__()
        self.out_features, self.in_features = weight.shape
        self.register_buffer("weight", weight.requires_grad_(False))
        self.register_buffer("absmax", absmax.requires_grad_(False))
        self.register_buffer("code", code.requires_grad_(False))
        self.adapter = None
        self.bias = bias

    def forward(self, input):
        output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
        if self.adapter:
            output += self.adapter(input)
        return output

    @classmethod
    def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
        weights_int8, state = quantize_blockise_lowmemory(linear.weight)
        return cls(weights_int8, *state, linear.bias)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"


class DequantizeAndLinear(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
                absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
        ctx.save_for_backward(input, weights_quantized, absmax, code)
        ctx._has_bias = bias is not None
        return F.linear(input, weights_deq, bias)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output: torch.Tensor):
        assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
        input, weights_quantized, absmax, code = ctx.saved_tensors
        # grad_output: [*batch, out_features]
        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
        grad_input = grad_output @ weights_deq
        grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
        return grad_input, None, None, None, grad_bias


class FrozenBNBEmbedding(nn.Module):
    def __init__(self, weight, absmax, code):
        super().__init__()
        self.num_embeddings, self.embedding_dim = weight.shape
        self.register_buffer("weight", weight.requires_grad_(False))
        self.register_buffer("absmax", absmax.requires_grad_(False))
        self.register_buffer("code", code.requires_grad_(False))
        self.adapter = None

    def forward(self, input, **kwargs):
        with torch.no_grad():
            # note: both quantuized weights and input indices are *not* differentiable
            weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
            output = F.embedding(input, weight_deq, **kwargs)
        if self.adapter:
            output += self.adapter(input)
        return output

    @classmethod
    def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
        weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
        return cls(weights_int8, *state)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"


def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
    assert chunk_size % 4096 == 0
    code = None
    chunks = []
    absmaxes = []
    flat_tensor = matrix.view(-1)
    for i in range((matrix.numel() - 1) // chunk_size + 1):
        input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
        quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
        chunks.append(quantized_chunk)
        absmaxes.append(absmax_chunk)

    matrix_i8 = torch.cat(chunks).reshape_as(matrix)
    absmax = torch.cat(absmaxes)
    return matrix_i8, (absmax, code)


def convert_to_int8(model):
    """Convert linear and embedding modules to 8-bit with optional adapters"""
    for module in list(model.modules()):
        for name, child in module.named_children():
            if isinstance(child, nn.Linear):
                print(name, child)
                setattr(
                    module,
                    name,
                    FrozenBNBLinear(
                        weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
                        code=torch.zeros(256),
                        bias=child.bias,
                    ),
                )
            elif isinstance(child, nn.Embedding):
                setattr(
                    module,
                    name,
                    FrozenBNBEmbedding(
                        weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
                        code=torch.zeros(256),
                    )
                )


class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
    def __init__(self, config):
        super().__init__(config)

        convert_to_int8(self.attn)
        convert_to_int8(self.mlp)


class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
    def __init__(self, config):
        super().__init__(config)
        convert_to_int8(self)


class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
    def __init__(self, config):
        super().__init__(config)
        convert_to_int8(self)


transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock  # monkey-patch GPT-J


# -----------------------------------------> API <---------------------------------------
path=""
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
model = GPTJForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
device = 0 if torch.cuda.is_available() else -1


class EndpointHandler:
    def __init__(self, path=""):
        # load the model
        model.to(device)
        # create inference pipeline
        self.pipeline = pipeline(model=model, tokenizer=tokenizer, device=device)

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # run the model and get the output(generated text)
        prompt = inputs
        temperature = float(parameters.temperature)
        length = int(parameters.length)
        logger.info("message input: %s", prompt)
        logger.info("tempereture: %s", parameters.temperature)
        logger.info("length: %s", parameters.length)
        start = time.time()
        prompt = tokenizer(prompt, return_tensors='pt')
        prompt = {key: value.to(device) for key, value in prompt.items()}
        out = model.generate(**prompt, min_length=length, max_length=length, temperature=temperature, do_sample=True)
        generated_text = tokenizer.decode(out[0])
        logger.info("generated text: ", generated_text)
        logger.info("time taken: %s", time.time() - start)
        result = {"output": generated_text}
        result = json.dumps(result)
        return result