File size: 10,718 Bytes
3e86372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
"""
finetune-gpt-j-6B-8bit.ipynb
https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es
### Fine-tuning 6-Billion GPT-J in colab with LoRA and 8-bit compression
(https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory. A 
https://huggingface.co/hivemind/gpt-j-6B-8bit)
This notebook is a proof of concept for fine-tuning 
[GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory. 
A detailed explanation of how it works can be found in [this model card]
(https://huggingface.co/hivemind/gpt-j-6B-8bit).
"""

from loguru import logger
import transformers
import torch
import torch.nn.functional as F
from torch import nn
from torch.cuda.amp import custom_fwd, custom_bwd
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
from tqdm.auto import tqdm
from datasets import load_dataset
from bitsandbytes.optim import Adam8bit
import time, os

# ---------------------> Converting the model to 8 bits <------------------- #
"""
We convert EleutherAI's GPT-J-6B model to 8 bits using facebook's [bitsandbytes](https://github.com/facebookresearch/bitsandbytes) library. 
This reduces the model's size from 20Gb down to just 6Gb.
Note that we don't convert linear layer biases to 8 bit as they take up less that 1% of the model's weight anyway.
"""

class FrozenBNBLinear(nn.Module):
    def __init__(self, weight, absmax, code, bias=None):
        assert isinstance(bias, nn.Parameter) or bias is None
        super().__init__()
        self.out_features, self.in_features = weight.shape
        self.register_buffer("weight", weight.requires_grad_(False))
        self.register_buffer("absmax", absmax.requires_grad_(False))
        self.register_buffer("code", code.requires_grad_(False))
        self.adapter = None
        self.bias = bias

    def forward(self, input):
        output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
        if self.adapter:
            output = output + self.adapter(input)
        return output

    @classmethod
    def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
        weights_int8, state = quantize_blockise_lowmemory(linear.weight)
        return cls(weights_int8, *state, linear.bias)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"



class DequantizeAndLinear(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
                absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
        ctx.save_for_backward(input, weights_quantized, absmax, code)
        ctx._has_bias = bias is not None
        return F.linear(input, weights_deq, bias)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output: torch.Tensor):
        assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
        input, weights_quantized, absmax, code = ctx.saved_tensors
        # grad_output: [*batch, out_features]
        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
        grad_input = grad_output @ weights_deq
        grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
        return grad_input, None, None, None, grad_bias


class FrozenBNBEmbedding(nn.Module):
    def __init__(self, weight, absmax, code):
        super().__init__()
        self.num_embeddings, self.embedding_dim = weight.shape
        self.register_buffer("weight", weight.requires_grad_(False))
        self.register_buffer("absmax", absmax.requires_grad_(False))
        self.register_buffer("code", code.requires_grad_(False))
        self.adapter = None

    def forward(self, input, **kwargs):
        with torch.no_grad():
            # note: both quantuized weights and input indices are *not* differentiable
            weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
            output = F.embedding(input, weight_deq, **kwargs)
        if self.adapter:
            output += self.adapter(input)
        return output

    @classmethod
    def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
        weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
        return cls(weights_int8, *state)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"

def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
    assert chunk_size % 4096 == 0
    code = None
    chunks = []
    absmaxes = []
    flat_tensor = matrix.view(-1)
    for i in range((matrix.numel() - 1) // chunk_size + 1):
        input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
        quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
        chunks.append(quantized_chunk)
        absmaxes.append(absmax_chunk)

    matrix_i8 = torch.cat(chunks).reshape_as(matrix)
    absmax = torch.cat(absmaxes)
    return matrix_i8, (absmax, code)


def convert_to_int8(model):
    """Convert linear and embedding modules to 8-bit with optional adapters"""
    for module in list(model.modules()):
        for name, child in module.named_children():
            if isinstance(child, nn.Linear):
                print(name, child)
                setattr(
                    module,
                    name,
                    FrozenBNBLinear(
                        weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
                        code=torch.zeros(256),
                        bias=child.bias,
                    ),
                )
            elif isinstance(child, nn.Embedding):
                setattr(
                    module,
                    name,
                    FrozenBNBEmbedding(
                        weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
                        code=torch.zeros(256),
                    )
                )

class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
    def __init__(self, config):
        super().__init__(config)

        convert_to_int8(self.attn)
        convert_to_int8(self.mlp)


class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
    def __init__(self, config):
        super().__init__(config)
        convert_to_int8(self)


class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
    def __init__(self, config):
        super().__init__(config)
        convert_to_int8(self)


transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock  # monkey-patch GPT-J

# ---------------------> Loading EleutherAI/gpt-j-6B config and tokenizer <------------------- #
config = transformers.GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B")
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")

# ---------------------> Downloading gpt-j-6B-8bit model from huggingface <------------------- #
#gpt = GPTJForCausalLM.from_pretrained("hivemind/gpt-j-6B-8bit")

# ----------------> Saving gpt-j-6B-8bit model to server <-----------------#
#save_dir = "./saved_models_gpt-j-6B-8bit/gpt-j-6B"
#gpt.save_pretrained(save_dir)
#logger.info("Saved model to {}".format(save_dir))

# ---------------------> Loading saved gpt-j-6B-8bit model <------------------- #
gpt = GPTJForCausalLM.from_pretrained("./saved_models_gpt-j-6B-8bit/gpt-j-6B")

device = 'cuda' if torch.cuda.is_available() else 'cpu'
gpt.to(device)

# ---------------------> Text generation example <------------------- #
prompt = tokenizer("A cat sat on a mat", return_tensors='pt')
prompt = {key: value.to(device) for key, value in prompt.items()}
out = gpt.generate(**prompt, min_length=128, max_length=128, do_sample=True)
logger.info("Generated text: {}".format(tokenizer.decode(out[0])))


# ---------------------> LoRA fine-tuning example <------------------- #

def add_adapters(model, adapter_dim=16):
    assert adapter_dim > 0

    for module in model.modules():
        if isinstance(module, FrozenBNBLinear):
            module.adapter = nn.Sequential(
                nn.Linear(module.in_features, adapter_dim, bias=False),
                nn.Linear(adapter_dim, module.out_features, bias=False),
            )
            nn.init.zeros_(module.adapter[1].weight)
        elif isinstance(module, FrozenBNBEmbedding):
            module.adapter = nn.Sequential(
                nn.Embedding(module.num_embeddings, adapter_dim),
                nn.Linear(adapter_dim, module.embedding_dim, bias=False),
            )
            nn.init.zeros_(module.adapter[1].weight)

add_adapters(gpt)
gpt.to(device)
gpt.gradient_checkpointing_enable()

# example dataset
data_files = {"train": "data.jsonl"}
dataset = load_dataset('nomic-ai/gpt4all_prompt_generations_with_p3', data_files=data_files)
prompt_response_separator = " response: "

def concatenate_prompt_response(row):
    row["text"] = "prompt: " + row["prompt"] + prompt_response_separator + row["response"]
    return row

dataset = dataset.map(concatenate_prompt_response, remove_columns=["prompt", "response"])

# custom dataset
#dataset = load_dataset('text', data_files={'train': ['article-1.txt', 'article-2.txt'], 'test': ['article-3.txt', 'article-4.txt']})

optimizer = Adam8bit(gpt.parameters(), lr=1e-5)

# Set the model to training mode
start = time.time()

# Training loop
with torch.cuda.amp.autocast():
    for row in tqdm(dataset["train"]):
        if len(row["text"]) <= 1:
            continue
        batch = tokenizer(row["text"], truncation=True, max_length=128, return_tensors='pt')
        batch = {k: v.cuda() for k, v in batch.items()}
        out = gpt.forward(**batch,)
        loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),
                               reduction='mean')
        print(loss)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()        
        
logger.info("Finished fine-tuning in {}".format(time.time() - start))

# --------------> Saving fine-tuned model <-----------------#
try:
    save_dir = "./finetuned_gpt-j-8_bit"
    os.makedirs(save_dir)
    gpt.save_pretrained(save_dir)
except Exception as e:
    #print("Error saving model: ", e)
    logger.info("Error saving model: {}".format(e))