File size: 1,935 Bytes
35d9624
 
 
3e86372
5b941ac
3e86372
 
 
 
 
35d9624
3e86372
 
 
 
eb4b3b5
 
 
3e86372
 
 
 
 
eb4b3b5
3e86372
 
 
 
 
35d9624
 
 
 
 
 
 
 
 
 
eb4b3b5
35d9624
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import time
import json
from pydantic import BaseModel
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
from torch import nn
import torch.nn.functional as F
from torch.cuda.amp import custom_fwd, custom_bwd
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
from loguru import logger
from typing import Dict, List, Any


# -----------------------------------------> API <---------------------------------------
name="Kanpredict/gptj-6b-8bits"
model = AutoModelForCausalLM.from_pretrained(name, device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(name)


class EndpointHandler:
    def __init__(self, path=""):
        # create inference pipeline
        self.pipeline = pipeline(model=name, model_kwargs= {"device_map": "auto", "load_in_8bit": True}, max_new_tokens=max_new_tokens)

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # run the model and get the output(generated text)
        prompt = inputs
        temperature = float(parameters.temperature)
        length = int(parameters.length)
        logger.info("message input: %s", prompt)
        logger.info("tempereture: %s", parameters.temperature)
        logger.info("length: %s", parameters.length)
        start = time.time()
        prompt = tokenizer(prompt, return_tensors='pt')
        prompt = {key: value.to(device) for key, value in prompt.items()}
        out = self.pipeline(**prompt, min_length=length, max_length=length, temperature=temperature, do_sample=True)
        generated_text = tokenizer.decode(out[0])
        logger.info("generated text: ", generated_text)
        logger.info("time taken: %s", time.time() - start)
        result = {"output": generated_text}
        result = json.dumps(result)
        return result