gptj-6b-8bits / gpt-j-6b-8-bit.py
OssamaLafhel's picture
Upload 3 files
3e86372
raw
history blame
10.7 kB
# -*- coding: utf-8 -*-
"""
finetune-gpt-j-6B-8bit.ipynb
https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es
### Fine-tuning 6-Billion GPT-J in colab with LoRA and 8-bit compression
(https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory. A
https://huggingface.co/hivemind/gpt-j-6B-8bit)
This notebook is a proof of concept for fine-tuning
[GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory.
A detailed explanation of how it works can be found in [this model card]
(https://huggingface.co/hivemind/gpt-j-6B-8bit).
"""
from loguru import logger
import transformers
import torch
import torch.nn.functional as F
from torch import nn
from torch.cuda.amp import custom_fwd, custom_bwd
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
from tqdm.auto import tqdm
from datasets import load_dataset
from bitsandbytes.optim import Adam8bit
import time, os
# ---------------------> Converting the model to 8 bits <------------------- #
"""
We convert EleutherAI's GPT-J-6B model to 8 bits using facebook's [bitsandbytes](https://github.com/facebookresearch/bitsandbytes) library.
This reduces the model's size from 20Gb down to just 6Gb.
Note that we don't convert linear layer biases to 8 bit as they take up less that 1% of the model's weight anyway.
"""
class FrozenBNBLinear(nn.Module):
def __init__(self, weight, absmax, code, bias=None):
assert isinstance(bias, nn.Parameter) or bias is None
super().__init__()
self.out_features, self.in_features = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
self.bias = bias
def forward(self, input):
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
if self.adapter:
output = output + self.adapter(input)
return output
@classmethod
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
return cls(weights_int8, *state, linear.bias)
def __repr__(self):
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
class DequantizeAndLinear(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
ctx.save_for_backward(input, weights_quantized, absmax, code)
ctx._has_bias = bias is not None
return F.linear(input, weights_deq, bias)
@staticmethod
@custom_bwd
def backward(ctx, grad_output: torch.Tensor):
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
input, weights_quantized, absmax, code = ctx.saved_tensors
# grad_output: [*batch, out_features]
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
grad_input = grad_output @ weights_deq
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
return grad_input, None, None, None, grad_bias
class FrozenBNBEmbedding(nn.Module):
def __init__(self, weight, absmax, code):
super().__init__()
self.num_embeddings, self.embedding_dim = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
def forward(self, input, **kwargs):
with torch.no_grad():
# note: both quantuized weights and input indices are *not* differentiable
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
output = F.embedding(input, weight_deq, **kwargs)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
return cls(weights_int8, *state)
def __repr__(self):
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
assert chunk_size % 4096 == 0
code = None
chunks = []
absmaxes = []
flat_tensor = matrix.view(-1)
for i in range((matrix.numel() - 1) // chunk_size + 1):
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
chunks.append(quantized_chunk)
absmaxes.append(absmax_chunk)
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
absmax = torch.cat(absmaxes)
return matrix_i8, (absmax, code)
def convert_to_int8(model):
"""Convert linear and embedding modules to 8-bit with optional adapters"""
for module in list(model.modules()):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
print(name, child)
setattr(
module,
name,
FrozenBNBLinear(
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
bias=child.bias,
),
)
elif isinstance(child, nn.Embedding):
setattr(
module,
name,
FrozenBNBEmbedding(
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
)
)
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self.attn)
convert_to_int8(self.mlp)
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J
# ---------------------> Loading EleutherAI/gpt-j-6B config and tokenizer <------------------- #
config = transformers.GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B")
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
# ---------------------> Downloading gpt-j-6B-8bit model from huggingface <------------------- #
#gpt = GPTJForCausalLM.from_pretrained("hivemind/gpt-j-6B-8bit")
# ----------------> Saving gpt-j-6B-8bit model to server <-----------------#
#save_dir = "./saved_models_gpt-j-6B-8bit/gpt-j-6B"
#gpt.save_pretrained(save_dir)
#logger.info("Saved model to {}".format(save_dir))
# ---------------------> Loading saved gpt-j-6B-8bit model <------------------- #
gpt = GPTJForCausalLM.from_pretrained("./saved_models_gpt-j-6B-8bit/gpt-j-6B")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gpt.to(device)
# ---------------------> Text generation example <------------------- #
prompt = tokenizer("A cat sat on a mat", return_tensors='pt')
prompt = {key: value.to(device) for key, value in prompt.items()}
out = gpt.generate(**prompt, min_length=128, max_length=128, do_sample=True)
logger.info("Generated text: {}".format(tokenizer.decode(out[0])))
# ---------------------> LoRA fine-tuning example <------------------- #
def add_adapters(model, adapter_dim=16):
assert adapter_dim > 0
for module in model.modules():
if isinstance(module, FrozenBNBLinear):
module.adapter = nn.Sequential(
nn.Linear(module.in_features, adapter_dim, bias=False),
nn.Linear(adapter_dim, module.out_features, bias=False),
)
nn.init.zeros_(module.adapter[1].weight)
elif isinstance(module, FrozenBNBEmbedding):
module.adapter = nn.Sequential(
nn.Embedding(module.num_embeddings, adapter_dim),
nn.Linear(adapter_dim, module.embedding_dim, bias=False),
)
nn.init.zeros_(module.adapter[1].weight)
add_adapters(gpt)
gpt.to(device)
gpt.gradient_checkpointing_enable()
# example dataset
data_files = {"train": "data.jsonl"}
dataset = load_dataset('nomic-ai/gpt4all_prompt_generations_with_p3', data_files=data_files)
prompt_response_separator = " response: "
def concatenate_prompt_response(row):
row["text"] = "prompt: " + row["prompt"] + prompt_response_separator + row["response"]
return row
dataset = dataset.map(concatenate_prompt_response, remove_columns=["prompt", "response"])
# custom dataset
#dataset = load_dataset('text', data_files={'train': ['article-1.txt', 'article-2.txt'], 'test': ['article-3.txt', 'article-4.txt']})
optimizer = Adam8bit(gpt.parameters(), lr=1e-5)
# Set the model to training mode
start = time.time()
# Training loop
with torch.cuda.amp.autocast():
for row in tqdm(dataset["train"]):
if len(row["text"]) <= 1:
continue
batch = tokenizer(row["text"], truncation=True, max_length=128, return_tensors='pt')
batch = {k: v.cuda() for k, v in batch.items()}
out = gpt.forward(**batch,)
loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),
reduction='mean')
print(loss)
loss.backward()
optimizer.step()
optimizer.zero_grad()
logger.info("Finished fine-tuning in {}".format(time.time() - start))
# --------------> Saving fine-tuned model <-----------------#
try:
save_dir = "./finetuned_gpt-j-8_bit"
os.makedirs(save_dir)
gpt.save_pretrained(save_dir)
except Exception as e:
#print("Error saving model: ", e)
logger.info("Error saving model: {}".format(e))