|
import time |
|
import json |
|
from pydantic import BaseModel |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.cuda.amp import custom_fwd, custom_bwd |
|
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise |
|
from loguru import logger |
|
from typing import Dict, List, Any |
|
|
|
|
|
|
|
name="Kanpredict/gptj-6b-8bits" |
|
model = AutoModelForCausalLM.from_pretrained(name, device_map="auto", load_in_8bit=True) |
|
tokenizer = AutoTokenizer.from_pretrained(name) |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.pipeline = pipeline(model=name, model_kwargs= {"device_map": "auto", "load_in_8bit": True}, max_new_tokens=max_new_tokens) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
prompt = inputs |
|
temperature = float(parameters.temperature) |
|
length = int(parameters.length) |
|
logger.info("message input: %s", prompt) |
|
logger.info("tempereture: %s", parameters.temperature) |
|
logger.info("length: %s", parameters.length) |
|
start = time.time() |
|
prompt = tokenizer(prompt, return_tensors='pt') |
|
prompt = {key: value.to(device) for key, value in prompt.items()} |
|
out = self.pipeline(**prompt, min_length=length, max_length=length, temperature=temperature, do_sample=True) |
|
generated_text = tokenizer.decode(out[0]) |
|
logger.info("generated text: ", generated_text) |
|
logger.info("time taken: %s", time.time() - start) |
|
result = {"output": generated_text} |
|
result = json.dumps(result) |
|
return result |
|
|
|
|