|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.7408 |
|
- Rouge1: 11.6009 |
|
- Rouge2: 2.8728 |
|
- Rougel: 11.8004 |
|
- Rougelsum: 11.9188 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 12.338 | 1.0 | 300 | 5.2256 | 4.1224 | 1.2022 | 4.1645 | 4.2077 | |
|
| 5.5954 | 2.0 | 600 | 3.9721 | 9.005 | 2.1934 | 9.133 | 9.2792 | |
|
| 4.5559 | 3.0 | 900 | 3.8552 | 9.5807 | 2.6302 | 9.511 | 9.5471 | |
|
| 4.1858 | 4.0 | 1200 | 3.8014 | 10.8843 | 2.9462 | 10.9298 | 11.1352 | |
|
| 3.9963 | 5.0 | 1500 | 3.7575 | 13.0171 | 4.7986 | 13.0233 | 12.9146 | |
|
| 3.884 | 6.0 | 1800 | 3.7491 | 11.6897 | 2.8728 | 11.8886 | 12.0365 | |
|
| 3.8293 | 7.0 | 2100 | 3.7408 | 11.4003 | 2.8728 | 11.5425 | 11.6537 | |
|
| 3.7902 | 8.0 | 2400 | 3.7408 | 11.6009 | 2.8728 | 11.8004 | 11.9188 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Tokenizers 0.20.3 |
|
|