vit-base-railspace / README.md
Kaspar's picture
Update README.md
fa5bb5e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-railspace
    results: []
widget:
  - src: >-
      https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/1.png
    example_title: patch
  - src: >-
      https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/271.png
    example_title: patch

vit-base-beans-demo-v5

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0292
  • Accuracy: 0.9926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

          precision    recall  f1-score   support

       0       1.00      1.00      1.00     11315
       1       0.92      0.94      0.93       204
       2       0.95      0.97      0.96       714
       3       0.87      0.98      0.92       171

macro avg 0.93 0.97 0.95 12404 weighted avg 0.99 0.99 0.99 12404 accuracy 0.99 12404

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0206 1.72 1000 0.0422 0.9854
0.0008 3.44 2000 0.0316 0.9918

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2