metadata
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8620945214069894
- task:
type: token-classification
name: Token Classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.899981559318585
verified: true
- name: Precision
type: precision
value: 0.9009035072102546
verified: true
- name: Recall
type: recall
value: 0.9206610317249744
verified: true
- name: F1
type: f1
value: 0.9106751198809252
verified: true
- name: loss
type: loss
value: 0.3754884600639343
verified: true
xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set:
- Loss: 0.1372
- F1: 0.8621
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.2575 | 1.0 | 525 | 0.1621 | 0.8292 |
0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 |
0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1