|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- consumer-finance-complaints |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: distilbert-complaints-wandb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: consumer-finance-complaints |
|
type: consumer-finance-complaints |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.868877906608376 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8630522401242867 |
|
- name: Recall |
|
type: recall |
|
value: 0.868877906608376 |
|
- name: Precision |
|
type: precision |
|
value: 0.8616053523512515 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-complaints-wandb |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4448 |
|
- Accuracy: 0.8689 |
|
- F1: 0.8631 |
|
- Recall: 0.8689 |
|
- Precision: 0.8616 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.571 | 0.51 | 2000 | 0.5150 | 0.8469 | 0.8349 | 0.8469 | 0.8249 | |
|
| 0.4765 | 1.01 | 4000 | 0.4676 | 0.8561 | 0.8451 | 0.8561 | 0.8376 | |
|
| 0.3376 | 1.52 | 6000 | 0.4560 | 0.8609 | 0.8546 | 0.8609 | 0.8547 | |
|
| 0.268 | 2.03 | 8000 | 0.4399 | 0.8684 | 0.8611 | 0.8684 | 0.8607 | |
|
| 0.2654 | 2.53 | 10000 | 0.4448 | 0.8689 | 0.8631 | 0.8689 | 0.8616 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|