See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-70B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: datasets/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: datasets/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: datasets/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: datasets/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: datasets/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: datasets/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: datasets/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: 70BDOL
val_set_size: 0.0002
output_dir: ./70BDOL
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 4
micro_batch_size: 3
num_epochs: 3
logging_steps: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
wandb_project: 70BDOL
wandb_watch:
wandb_run_id:
wandb_log_model:
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint: 70BDOL/checkpoint-2149
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
saves_per_epoch: 5
save_total_limit: 2
save_steps:
evals_per_epoch: 5
eval_sample_packing: false
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
70BDOL
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5272
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.8626 | 0.0 | 1 | 0.8021 |
0.5395 | 0.2 | 307 | 0.5590 |
0.5062 | 0.4 | 614 | 0.5462 |
0.4612 | 0.6 | 921 | 0.5373 |
0.4884 | 0.8 | 1228 | 0.5302 |
0.48 | 1.0 | 1535 | 0.5176 |
0.3536 | 1.19 | 1842 | 0.5342 |
0.3205 | 1.39 | 2149 | 0.5311 |
0.2462 | 1.6 | 2456 | 0.5373 |
0.2384 | 1.8 | 2763 | 0.5275 |
0.2594 | 2.0 | 3070 | 0.5196 |
0.1562 | 2.19 | 3377 | 0.5347 |
0.1412 | 2.39 | 3684 | 0.5334 |
0.1468 | 2.59 | 3991 | 0.5276 |
0.1458 | 2.79 | 4298 | 0.5279 |
0.1368 | 2.99 | 4605 | 0.5272 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.4.0.dev20240412+rocm6.0
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kearm/db2d9333046144663b6a720d3a6dd4d4
Base model
meta-llama/Meta-Llama-3-70B