Keerthana4's picture
Keerthana4/distilbert-base-uncased-lora-text-classification
bb3c528 verified
metadata
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9788
  • Accuracy: {'accuracy': 0.887}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3110 {'accuracy': 0.895}
0.4325 2.0 500 0.4438 {'accuracy': 0.883}
0.4325 3.0 750 0.6263 {'accuracy': 0.882}
0.1901 4.0 1000 0.6301 {'accuracy': 0.888}
0.1901 5.0 1250 0.7492 {'accuracy': 0.888}
0.0615 6.0 1500 0.8813 {'accuracy': 0.894}
0.0615 7.0 1750 1.0208 {'accuracy': 0.889}
0.0231 8.0 2000 0.9440 {'accuracy': 0.886}
0.0231 9.0 2250 0.9579 {'accuracy': 0.887}
0.0074 10.0 2500 0.9788 {'accuracy': 0.887}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1