Kendamarron's picture
Update README.md
915b62d verified
metadata
library_name: transformers
license: apache-2.0
base_model: llm-jp/llm-jp-3-3.7b-instruct
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: sft
    results: []
language:
  - ja

Kendamarron/LongWriter-llm-jp-3-3.7b-instruct

llm-jp/llm-jp-3-3.7b-instructを長文出力ができるようにSFTしたモデルです。

Dataset

Detail

https://zenn.dev/kendama/articles/32aa9ec4bed409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.7184 1.2626 500 0.7673

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3

LLaMA-Factory yaml

### model
model_name_or_path: llm-jp/llm-jp-3-3.7b-instruct

### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
enable_liger_kernel: true

### dataset
dataset: longwriter
template: alpaca_ja
cutoff_len: 32768
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/llm_jp/full/sft
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
optim: adamw_bnb_8bit
num_train_epochs: 2.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

### logging
report_to: wandb