|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: Hub-Report-20241202125641 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Hub-Report-20241202125641 |
|
|
|
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0629 |
|
- F1: 0.9126 |
|
- Roc Auc: 0.9528 |
|
- Accuracy: 0.9099 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 13 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.3156 | 1.0 | 936 | 0.1257 | 0.7426 | 0.8057 | 0.6152 | |
|
| 0.0977 | 2.0 | 1872 | 0.0706 | 0.8950 | 0.9376 | 0.8831 | |
|
| 0.0526 | 3.0 | 2808 | 0.0596 | 0.9000 | 0.9442 | 0.8946 | |
|
| 0.032 | 4.0 | 3744 | 0.0551 | 0.9081 | 0.9497 | 0.9036 | |
|
| 0.0226 | 5.0 | 4680 | 0.0632 | 0.8951 | 0.9428 | 0.8909 | |
|
| 0.0193 | 6.0 | 5616 | 0.0579 | 0.9098 | 0.9510 | 0.9068 | |
|
| 0.0156 | 7.0 | 6552 | 0.0607 | 0.9086 | 0.9504 | 0.9046 | |
|
| 0.0129 | 8.0 | 7488 | 0.0611 | 0.9118 | 0.9523 | 0.9080 | |
|
| 0.0126 | 9.0 | 8424 | 0.0633 | 0.9114 | 0.9529 | 0.9077 | |
|
| 0.0107 | 10.0 | 9360 | 0.0629 | 0.9126 | 0.9528 | 0.9099 | |
|
| 0.0084 | 11.0 | 10296 | 0.0654 | 0.9091 | 0.9510 | 0.9058 | |
|
| 0.0079 | 12.0 | 11232 | 0.0647 | 0.9100 | 0.9521 | 0.9055 | |
|
| 0.0065 | 13.0 | 12168 | 0.0652 | 0.9102 | 0.9523 | 0.9071 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|