ViT_bloodmnist_std_15
This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1123
- Accuracy: 0.9699
- F1: 0.9662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.4602 | 0.0595 | 200 | 0.2846 | 0.9019 | 0.8995 |
0.19 | 0.1189 | 400 | 0.2421 | 0.9118 | 0.9056 |
0.1612 | 0.1784 | 600 | 0.1811 | 0.9299 | 0.9222 |
0.1443 | 0.2378 | 800 | 0.1166 | 0.9556 | 0.9491 |
0.1105 | 0.2973 | 1000 | 0.1091 | 0.9603 | 0.9560 |
0.0996 | 0.3567 | 1200 | 0.1631 | 0.9433 | 0.9292 |
0.0913 | 0.4162 | 1400 | 0.1724 | 0.9393 | 0.9285 |
0.0708 | 0.4756 | 1600 | 0.1206 | 0.9591 | 0.9540 |
0.0829 | 0.5351 | 1800 | 0.0888 | 0.9685 | 0.9625 |
0.0624 | 0.5945 | 2000 | 0.1379 | 0.9579 | 0.9519 |
0.0652 | 0.6540 | 2200 | 0.1158 | 0.9685 | 0.9667 |
0.0495 | 0.7134 | 2400 | 0.1169 | 0.9655 | 0.9642 |
0.0425 | 0.7729 | 2600 | 0.0944 | 0.9679 | 0.9643 |
0.0405 | 0.8323 | 2800 | 0.1280 | 0.9650 | 0.9605 |
0.0382 | 0.8918 | 3000 | 0.0762 | 0.9778 | 0.9755 |
0.0336 | 0.9512 | 3200 | 0.1064 | 0.9708 | 0.9697 |
0.0318 | 1.0107 | 3400 | 0.1001 | 0.9720 | 0.9682 |
0.0162 | 1.0702 | 3600 | 0.1018 | 0.9737 | 0.9720 |
0.0165 | 1.1296 | 3800 | 0.1431 | 0.9614 | 0.9537 |
0.0133 | 1.1891 | 4000 | 0.0808 | 0.9766 | 0.9736 |
0.0146 | 1.2485 | 4200 | 0.0912 | 0.9737 | 0.9707 |
0.0091 | 1.3080 | 4400 | 0.1006 | 0.9761 | 0.9747 |
0.0074 | 1.3674 | 4600 | 0.1114 | 0.9702 | 0.9680 |
0.0134 | 1.4269 | 4800 | 0.1200 | 0.9725 | 0.9705 |
0.012 | 1.4863 | 5000 | 0.1063 | 0.9720 | 0.9694 |
0.0099 | 1.5458 | 5200 | 0.1239 | 0.9690 | 0.9667 |
0.006 | 1.6052 | 5400 | 0.1308 | 0.9731 | 0.9677 |
0.0057 | 1.6647 | 5600 | 0.1479 | 0.9702 | 0.9682 |
0.0107 | 1.7241 | 5800 | 0.1194 | 0.9720 | 0.9684 |
0.0122 | 1.7836 | 6000 | 0.1083 | 0.9708 | 0.9691 |
0.0081 | 1.8430 | 6200 | 0.1087 | 0.9725 | 0.9690 |
0.0055 | 1.9025 | 6400 | 0.1063 | 0.9766 | 0.9731 |
0.0039 | 1.9620 | 6600 | 0.1530 | 0.9679 | 0.9631 |
0.0075 | 2.0214 | 6800 | 0.1052 | 0.9778 | 0.9764 |
0.0022 | 2.0809 | 7000 | 0.1340 | 0.9673 | 0.9628 |
0.0024 | 2.1403 | 7200 | 0.1034 | 0.9761 | 0.9742 |
0.0014 | 2.1998 | 7400 | 0.1039 | 0.9772 | 0.9751 |
0.0007 | 2.2592 | 7600 | 0.1032 | 0.9801 | 0.9792 |
0.0008 | 2.3187 | 7800 | 0.0984 | 0.9807 | 0.9797 |
0.0013 | 2.3781 | 8000 | 0.1034 | 0.9766 | 0.9752 |
0.0013 | 2.4376 | 8200 | 0.1049 | 0.9766 | 0.9749 |
0.0013 | 2.4970 | 8400 | 0.1006 | 0.9772 | 0.9756 |
0.0018 | 2.5565 | 8600 | 0.1157 | 0.9749 | 0.9703 |
0.0011 | 2.6159 | 8800 | 0.1049 | 0.9784 | 0.9779 |
0.0007 | 2.6754 | 9000 | 0.1167 | 0.9755 | 0.9721 |
0.0003 | 2.7348 | 9200 | 0.1058 | 0.9772 | 0.9746 |
0.0008 | 2.7943 | 9400 | 0.1049 | 0.9796 | 0.9767 |
0.0009 | 2.8537 | 9600 | 0.1084 | 0.9807 | 0.9787 |
0.0005 | 2.9132 | 9800 | 0.0999 | 0.9807 | 0.9787 |
0.0001 | 2.9727 | 10000 | 0.1001 | 0.9813 | 0.9796 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 214
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for KiViDrag/ViT_bloodmnist_std_15
Base model
google/vit-base-patch16-224Evaluation results
- Accuracy on medmnist-v2validation set self-reported0.970
- F1 on medmnist-v2validation set self-reported0.966