KingKazma's picture
Add BERTopic model
36477f3
|
raw
history blame
2.12 kB
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

cnn_dailymail_22457_3000_1500_test

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/cnn_dailymail_22457_3000_1500_test")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 9
  • Number of training documents: 1500
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 mccoy - jockey - ap - champion - winner 15 -1_mccoy_jockey_ap_champion
0 said - one - year - also - told 9 0_said_one_year_also
1 league - season - player - goal - game 994 1_league_season_player_goal
2 labour - mr - said - miliband - leader 290 2_labour_mr_said_miliband
3 race - hamilton - rosberg - mercedes - marathon 84 3_race_hamilton_rosberg_mercedes
4 england - cricket - test - pietersen - anderson 32 4_england_cricket_test_pietersen
5 ncaa - first - game - college - basketball 30 5_ncaa_first_game_college
6 masters - spieth - augusta - hole - round 28 6_masters_spieth_augusta_hole
7 mayweather - fight - pacquiao - boxing - vegas 18 7_mayweather_fight_pacquiao_boxing

Training hyperparameters

  • calculate_probabilities: True
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False

Framework versions

  • Numpy: 1.22.4
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.3
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.2.2
  • Transformers: 4.31.0
  • Numba: 0.56.4
  • Plotly: 5.13.1
  • Python: 3.10.6