File size: 1,148 Bytes
f93b9ba
 
 
 
 
 
 
 
f2c95da
9fe5cc7
e1197ad
 
f93b9ba
 
 
 
 
 
 
 
 
 
f2c95da
f93b9ba
 
 
 
 
 
 
 
 
f2c95da
 
 
 
 
 
 
 
 
ded85f4
f2c95da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
language:
- "th"
tags:
- "thai"
- "token-classification"
- "pos"
- "wikipedia"
- "dependency-parsing"
base_model: Geotrend/bert-base-th-cased
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "หลายหัวดีกว่าหัวเดียว"
---

# bert-base-thai-upos

## Model Description

This is a BERT model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).

## How to Use

```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-thai-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-thai-upos")
```

or

```py
import esupar
nlp=esupar.load("KoichiYasuoka/bert-base-thai-upos")
```

## See Also

[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models