This is just a 6bpw EXL2 quant of the original model which can be found on my huggingface profile. I will write a real model card when I have the final model...it's an experimental tune using part of my sandevistan dataset.
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
load_in_8bit: false
load_in_4bit: false
strict: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Kquant03/Sandevistan_Reformat
type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
max_steps: 80000
fix_untrained_tokens: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: Pneuma
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
max_grad_norm: 1
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
hub_model_id: Replete-AI/L3-Pneuma-8B
hub_strategy: every_save
warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
tokens:
L3-Pneuma-8B
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the Sandevistan dataset. It achieves the following results on the evaluation set:
- Loss: 2.7381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 743
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0378 | 0.0013 | 1 | 3.0437 |
0.6816 | 0.3334 | 248 | 2.7341 |
0.6543 | 0.6667 | 496 | 2.7381 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kquant03/L3-Pneuma-8B-6bpw
Base model
meta-llama/Meta-Llama-3-8B