whisper-large-de / README.md
Krish03's picture
End of training
858ac71 verified
metadata
library_name: transformers
language:
  - de
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large De - Krish Kalra
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: de
          split: test
          args: 'config: de, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 9.29112181693049

Whisper Large De - Krish Kalra

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2176
  • Wer: 9.2911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1148 1.0 300 0.1876 10.6676
0.1281 2.0 600 0.2023 11.0805
0.032 3.0 900 0.2043 10.1170
0.0015 4.0 1200 0.2194 9.7729
0.0005 5.0 1500 0.2176 9.2911

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3