WARNING: Not for Use - Bug INSTINST in response.
This model was merged, trained, and so on, thanks to the knowledge I gained from reading Maxime Labonne's course. Special thanks to him!
NeuTrixOmniBe-DPO
NeuTrixOmniBe-DPO is a merge of the following models using LazyMergekit:
𧩠Configuration
MODEL_NAME = "NeuTrixOmniBe-DPO"
yaml_config = """
slices:
- sources:
- model: CultriX/NeuralTrix-7B-dpo
layer_range: [0, 32]
- model: paulml/OmniBeagleSquaredMBX-v3-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: CultriX/NeuralTrix-7B-dpo
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
"""
It was then trained with DPO using:
- Intel/orca_dpo_pairs
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuTrixOmniBe-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=128, do_sample=True, temperature=0.5, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.17 |
AI2 Reasoning Challenge (25-Shot) | 72.78 |
HellaSwag (10-Shot) | 89.03 |
MMLU (5-Shot) | 64.28 |
TruthfulQA (0-shot) | 77.21 |
Winogrande (5-shot) | 85.16 |
GSM8k (5-shot) | 68.54 |
- Downloads last month
- 144
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kukedlc/NeuTrixOmniBe-DPO
Merge model
this model
Spaces using Kukedlc/NeuTrixOmniBe-DPO 6
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard72.780
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard89.030
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.280
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard77.210
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard85.160
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard68.540