|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- yam-peleg/Experiment21-7B |
|
- CultriX/NeuralTrix-bf16 |
|
- louisgrc/Montebello_7B_SLERP |
|
- CorticalStack/pastiche-crown-clown-7b-dare-dpo |
|
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO |
|
base_model: |
|
- yam-peleg/Experiment21-7B |
|
- CultriX/NeuralTrix-bf16 |
|
- louisgrc/Montebello_7B_SLERP |
|
- CorticalStack/pastiche-crown-clown-7b-dare-dpo |
|
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO |
|
--- |
|
|
|
# Neural-4-QA-7b |
|
|
|
Neural-4-QA-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [yam-peleg/Experiment21-7B](https://huggingface.co/yam-peleg/Experiment21-7B) |
|
* [CultriX/NeuralTrix-bf16](https://huggingface.co/CultriX/NeuralTrix-bf16) |
|
* [louisgrc/Montebello_7B_SLERP](https://huggingface.co/louisgrc/Montebello_7B_SLERP) |
|
* [CorticalStack/pastiche-crown-clown-7b-dare-dpo](https://huggingface.co/CorticalStack/pastiche-crown-clown-7b-dare-dpo) |
|
* [chihoonlee10/T3Q-Mistral-Orca-Math-DPO](https://huggingface.co/chihoonlee10/T3Q-Mistral-Orca-Math-DPO) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO |
|
# No parameters necessary for base model |
|
- model: yam-peleg/Experiment21-7B |
|
parameters: |
|
density: 0.66 |
|
weight: 0.2 |
|
- model: CultriX/NeuralTrix-bf16 |
|
parameters: |
|
density: 0.55 |
|
weight: 0.2 |
|
- model: louisgrc/Montebello_7B_SLERP |
|
parameters: |
|
density: 0.55 |
|
weight: 0.2 |
|
- model: CorticalStack/pastiche-crown-clown-7b-dare-dpo |
|
parameters: |
|
density: 0.44 |
|
weight: 0.2 |
|
- model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO |
|
parameters: |
|
density: 0.66 |
|
weight: 0.2 |
|
merge_method: dare_ties |
|
base_model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Kukedlc/Neural-4-QA-7b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |