NeuralContext-7b-v1 / README.md
Kukedlc's picture
Update README.md
9e7f776 verified
---
tags:
- merge
- mergekit
- lazymergekit
- Eric111/Mayo
- NousResearch/Hermes-2-Pro-Mistral-7B
- mistralai/Mistral-7B-Instruct-v0.2
- NousResearch/Yarn-Mistral-7b-128k
- Kukedlc/MyModelsMerge-7b
base_model:
- Eric111/Mayo
- NousResearch/Hermes-2-Pro-Mistral-7B
- mistralai/Mistral-7B-Instruct-v0.2
- NousResearch/Yarn-Mistral-7b-128k
- Kukedlc/MyModelsMerge-7b
license: apache-2.0
---
# NeuralContext-7b
NeuralContext-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Eric111/Mayo](https://huggingface.co/Eric111/Mayo)
* [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
* [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)
* [Kukedlc/MyModelsMerge-7b](https://huggingface.co/Kukedlc/MyModelsMerge-7b)
## 🧩 Configuration
```yaml
models:
- model: NousResearch/Yarn-Mistral-7b-128k
# No parameters necessary for base model
- model: Eric111/Mayo
parameters:
density: 0.33
weight: 0.2
- model: NousResearch/Hermes-2-Pro-Mistral-7B
parameters:
density: 0.66
weight: 0.2
- model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
density: 0.66
weight: 0.2
- model: NousResearch/Yarn-Mistral-7b-128k
parameters:
density: 0.66
weight: 0.2
- model: Kukedlc/MyModelsMerge-7b
parameters:
density: 0.55
weight: 0.2
merge_method: dare_ties
base_model: NousResearch/Yarn-Mistral-7b-128k
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralContext-7b-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```