metadata
tags:
- merge
- mergekit
- lazymergekit
- Hypersniper/The_Philosopher_Zephyr_7B
- sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA
- teknium/Mistral-Trismegistus-7B
base_model:
- Hypersniper/The_Philosopher_Zephyr_7B
- sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA
- teknium/Mistral-Trismegistus-7B
Trascendental-Bot-7B
Trascendental-Bot-7B is a merge of the following models using LazyMergekit:
- Hypersniper/The_Philosopher_Zephyr_7B
- sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA
- teknium/Mistral-Trismegistus-7B
🧩 Configuration
models:
- model: teknium/Mistral-Trismegistus-7B
# no parameters necessary for base model
- model: Hypersniper/The_Philosopher_Zephyr_7B
parameters:
density: 0.55
weight: 0.3
- model: sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA
parameters:
density: 0.55
weight: 0.3
- model: teknium/Mistral-Trismegistus-7B
parameters:
density: 0.4
weight: 0.66
merge_method: dare_ties
base_model: teknium/Mistral-Trismegistus-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/Trascendental-Bot-7B"
messages = [
{"role": "system", "content": "You are an expert assistant in mysticism and philosophy."},
{"role": "user", "content": "Create an innovative and disruptive theory that explains human consciousness. Give me an extensive and detailed answer."}
]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])