Edit model card

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2745
  • Accuracy: 0.6375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 1.7629 0.4375
No log 2.0 40 1.5012 0.5
No log 3.0 60 1.3757 0.5
No log 4.0 80 1.2452 0.5625
No log 5.0 100 1.2394 0.5625
No log 6.0 120 1.2083 0.6125
No log 7.0 140 1.2209 0.575
No log 8.0 160 1.2755 0.5875
No log 9.0 180 1.2794 0.5687
No log 10.0 200 1.2639 0.6125
No log 11.0 220 1.3129 0.6125
No log 12.0 240 1.2277 0.6312
No log 13.0 260 1.3620 0.5938
No log 14.0 280 1.3023 0.6062
No log 15.0 300 1.3334 0.6
No log 16.0 320 1.4142 0.5813
No log 17.0 340 1.2863 0.6125
No log 18.0 360 1.4084 0.5875
No log 19.0 380 1.4195 0.575
No log 20.0 400 1.4164 0.5938

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kukuru0917/emotion_classification

Finetuned
(1689)
this model

Evaluation results