metadata
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: dit-base-finetuned-rvlcdip-finetuned-ind-17-imbalanced-aadhaarmask
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8458918688803746
- name: Recall
type: recall
value: 0.8458918688803746
- name: F1
type: f1
value: 0.8445087759723635
- name: Precision
type: precision
value: 0.8462519380607423
dit-base-finetuned-rvlcdip-finetuned-ind-17-imbalanced-aadhaarmask
This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3727
- Accuracy: 0.8459
- Recall: 0.8459
- F1: 0.8445
- Precision: 0.8463
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
---|---|---|---|---|---|---|---|
0.9625 | 0.9974 | 293 | 0.8121 | 0.7812 | 0.7812 | 0.7600 | 0.7620 |
0.7711 | 1.9983 | 587 | 0.5780 | 0.8135 | 0.8135 | 0.7960 | 0.7843 |
0.555 | 2.9991 | 881 | 0.4868 | 0.8255 | 0.8255 | 0.8133 | 0.8133 |
0.6008 | 4.0 | 1175 | 0.4475 | 0.8357 | 0.8357 | 0.8281 | 0.8253 |
0.5318 | 4.9974 | 1468 | 0.4478 | 0.8267 | 0.8267 | 0.8221 | 0.8254 |
0.3382 | 5.9983 | 1762 | 0.3946 | 0.8463 | 0.8463 | 0.8412 | 0.8427 |
0.4307 | 6.9991 | 2056 | 0.4083 | 0.8344 | 0.8344 | 0.8317 | 0.8362 |
0.4613 | 8.0 | 2350 | 0.3915 | 0.8442 | 0.8442 | 0.8429 | 0.8481 |
0.3247 | 8.9974 | 2643 | 0.3758 | 0.8421 | 0.8421 | 0.8402 | 0.8395 |
0.3965 | 9.9745 | 2930 | 0.3637 | 0.8484 | 0.8484 | 0.8466 | 0.8470 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.0
- Tokenizers 0.19.1