metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8407833120476799
- name: Recall
type: recall
value: 0.8407833120476799
- name: F1
type: f1
value: 0.8382298834449193
- name: Precision
type: precision
value: 0.8403613762272836
swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3672
- Accuracy: 0.8408
- Recall: 0.8408
- F1: 0.8382
- Precision: 0.8404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
---|---|---|---|---|---|---|---|
0.6524 | 0.9974 | 293 | 0.5989 | 0.7986 | 0.7986 | 0.7886 | 0.7959 |
0.5004 | 1.9983 | 587 | 0.4830 | 0.8110 | 0.8110 | 0.8078 | 0.8190 |
0.3912 | 2.9991 | 881 | 0.4254 | 0.8199 | 0.8199 | 0.8162 | 0.8196 |
0.4007 | 4.0 | 1175 | 0.4324 | 0.8301 | 0.8301 | 0.8251 | 0.8302 |
0.2694 | 4.9974 | 1468 | 0.4215 | 0.8272 | 0.8272 | 0.8218 | 0.8301 |
0.3865 | 5.9983 | 1762 | 0.3620 | 0.8459 | 0.8459 | 0.8438 | 0.8471 |
0.2748 | 6.9991 | 2056 | 0.3733 | 0.8395 | 0.8395 | 0.8354 | 0.8510 |
0.3471 | 8.0 | 2350 | 0.3594 | 0.8370 | 0.8370 | 0.8364 | 0.8434 |
0.3361 | 8.9974 | 2643 | 0.3632 | 0.8404 | 0.8404 | 0.8386 | 0.8414 |
0.2399 | 9.9745 | 2930 | 0.3436 | 0.8455 | 0.8455 | 0.8446 | 0.8469 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.0
- Tokenizers 0.19.1