File size: 3,155 Bytes
ef53e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8dde4c
ef53e6b
 
c8dde4c
ef53e6b
 
c8dde4c
ef53e6b
 
c8dde4c
ef53e6b
 
 
 
 
 
 
 
 
c8dde4c
 
 
 
 
ef53e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8dde4c
 
 
 
 
 
 
 
 
 
ef53e6b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8565346956151554
    - name: Recall
      type: recall
      value: 0.8565346956151554
    - name: F1
      type: f1
      value: 0.853731165851545
    - name: Precision
      type: precision
      value: 0.8631033150629456
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3601
- Accuracy: 0.8565
- Recall: 0.8565
- F1: 0.8537
- Precision: 0.8631

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Recall | F1     | Precision |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| No log        | 0.9974 | 293  | 0.6645          | 0.7820   | 0.7820 | 0.7661 | 0.7678    |
| No log        | 1.9983 | 587  | 0.5493          | 0.8033   | 0.8033 | 0.7897 | 0.7964    |
| No log        | 2.9991 | 881  | 0.4242          | 0.8416   | 0.8416 | 0.8380 | 0.8460    |
| No log        | 4.0    | 1175 | 0.4124          | 0.8310   | 0.8310 | 0.8288 | 0.8299    |
| No log        | 4.9974 | 1468 | 0.3769          | 0.8412   | 0.8412 | 0.8388 | 0.8478    |
| No log        | 5.9983 | 1762 | 0.3589          | 0.8501   | 0.8501 | 0.8481 | 0.8582    |
| No log        | 6.9991 | 2056 | 0.3503          | 0.8455   | 0.8455 | 0.8456 | 0.8535    |
| No log        | 8.0    | 2350 | 0.3400          | 0.8404   | 0.8404 | 0.8416 | 0.8465    |
| No log        | 8.9974 | 2643 | 0.3533          | 0.8480   | 0.8480 | 0.8480 | 0.8501    |
| 0.5214        | 9.9745 | 2930 | 0.3358          | 0.8459   | 0.8459 | 0.8460 | 0.8473    |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.0
- Tokenizers 0.19.1