Edit model card

swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3601
  • Accuracy: 0.8565
  • Recall: 0.8565
  • F1: 0.8537
  • Precision: 0.8631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
No log 0.9974 293 0.6645 0.7820 0.7820 0.7661 0.7678
No log 1.9983 587 0.5493 0.8033 0.8033 0.7897 0.7964
No log 2.9991 881 0.4242 0.8416 0.8416 0.8380 0.8460
No log 4.0 1175 0.4124 0.8310 0.8310 0.8288 0.8299
No log 4.9974 1468 0.3769 0.8412 0.8412 0.8388 0.8478
No log 5.9983 1762 0.3589 0.8501 0.8501 0.8481 0.8582
No log 6.9991 2056 0.3503 0.8455 0.8455 0.8456 0.8535
No log 8.0 2350 0.3400 0.8404 0.8404 0.8416 0.8465
No log 8.9974 2643 0.3533 0.8480 0.8480 0.8480 0.8501
0.5214 9.9745 2930 0.3358 0.8459 0.8459 0.8460 0.8473

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kushagra07/swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

Finetuned
(49)
this model

Evaluation results