Kushagra07's picture
End of training
c8dde4c verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - recall
  - f1
  - precision
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8565346956151554
          - name: Recall
            type: recall
            value: 0.8565346956151554
          - name: F1
            type: f1
            value: 0.853731165851545
          - name: Precision
            type: precision
            value: 0.8631033150629456

swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3601
  • Accuracy: 0.8565
  • Recall: 0.8565
  • F1: 0.8537
  • Precision: 0.8631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
No log 0.9974 293 0.6645 0.7820 0.7820 0.7661 0.7678
No log 1.9983 587 0.5493 0.8033 0.8033 0.7897 0.7964
No log 2.9991 881 0.4242 0.8416 0.8416 0.8380 0.8460
No log 4.0 1175 0.4124 0.8310 0.8310 0.8288 0.8299
No log 4.9974 1468 0.3769 0.8412 0.8412 0.8388 0.8478
No log 5.9983 1762 0.3589 0.8501 0.8501 0.8481 0.8582
No log 6.9991 2056 0.3503 0.8455 0.8455 0.8456 0.8535
No log 8.0 2350 0.3400 0.8404 0.8404 0.8416 0.8465
No log 8.9974 2643 0.3533 0.8480 0.8480 0.8480 0.8501
0.5214 9.9745 2930 0.3358 0.8459 0.8459 0.8460 0.8473

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1