|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swinv2-tiny-patch4-window8-256 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- recall |
|
- f1 |
|
- precision |
|
model-index: |
|
- name: swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8565346956151554 |
|
- name: Recall |
|
type: recall |
|
value: 0.8565346956151554 |
|
- name: F1 |
|
type: f1 |
|
value: 0.853731165851545 |
|
- name: Precision |
|
type: precision |
|
value: 0.8631033150629456 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swinv2-tiny-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3601 |
|
- Accuracy: 0.8565 |
|
- Recall: 0.8565 |
|
- F1: 0.8537 |
|
- Precision: 0.8631 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| No log | 0.9974 | 293 | 0.6645 | 0.7820 | 0.7820 | 0.7661 | 0.7678 | |
|
| No log | 1.9983 | 587 | 0.5493 | 0.8033 | 0.8033 | 0.7897 | 0.7964 | |
|
| No log | 2.9991 | 881 | 0.4242 | 0.8416 | 0.8416 | 0.8380 | 0.8460 | |
|
| No log | 4.0 | 1175 | 0.4124 | 0.8310 | 0.8310 | 0.8288 | 0.8299 | |
|
| No log | 4.9974 | 1468 | 0.3769 | 0.8412 | 0.8412 | 0.8388 | 0.8478 | |
|
| No log | 5.9983 | 1762 | 0.3589 | 0.8501 | 0.8501 | 0.8481 | 0.8582 | |
|
| No log | 6.9991 | 2056 | 0.3503 | 0.8455 | 0.8455 | 0.8456 | 0.8535 | |
|
| No log | 8.0 | 2350 | 0.3400 | 0.8404 | 0.8404 | 0.8416 | 0.8465 | |
|
| No log | 8.9974 | 2643 | 0.3533 | 0.8480 | 0.8480 | 0.8480 | 0.8501 | |
|
| 0.5214 | 9.9745 | 2930 | 0.3358 | 0.8459 | 0.8459 | 0.8460 | 0.8473 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.0a0+81ea7a4 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|