chkpt / README.md
Kuwon's picture
solikang/koelectra-small-v3-nsmc
51db4dc
metadata
base_model: monologg/koelectra-small-v3-discriminator
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: chkpt
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8826086956521739
          - name: F1
            type: f1
            value: 0.8275730495029622
          - name: Precision
            type: precision
            value: 0.7789981096408317
          - name: Recall
            type: recall
            value: 0.8826086956521739

chkpt

This model is a fine-tuned version of monologg/koelectra-small-v3-discriminator on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2815
  • Accuracy: 0.8826
  • F1: 0.8276
  • Precision: 0.7790
  • Recall: 0.8826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 29 1.2815 0.8826 0.8276 0.7790 0.8826

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0