metadata
base_model: monologg/koelectra-small-v3-discriminator
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: chkpt
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8826086956521739
- name: F1
type: f1
value: 0.8275730495029622
- name: Precision
type: precision
value: 0.7789981096408317
- name: Recall
type: recall
value: 0.8826086956521739
chkpt
This model is a fine-tuned version of monologg/koelectra-small-v3-discriminator on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.2815
- Accuracy: 0.8826
- F1: 0.8276
- Precision: 0.7790
- Recall: 0.8826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 29 | 1.2815 | 0.8826 | 0.8276 | 0.7790 | 0.8826 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0