aristo-roberta / README.md
abarbosa's picture
Update README.md
6fe52e9
|
raw
history blame
4.19 kB
---
language: "english"
tags:
license: "mit"
datasets:
- race
- ai2_arc
- openbookqa
metrics:
- accuracy
---
# Roberta Large Fine Tuned on RACE
## Model description
This model follows the implementation by Allen AI team about [Aristo Roberta V7 Model](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0) given in [ARC Challenge](https://leaderboard.allenai.org/arc/submissions/public)
#### How to use
```python
import datasets
from transformers import RobertaTokenizer
from transformers import RobertaForMultipleChoice
tokenizer = RobertaTokenizer.from_pretrained(
"LIAMF-USP/aristo-roberta")
model = RobertaForMultipleChoice.from_pretrained(
"LIAMF-USP/aristo-roberta")
dataset = datasets.load_dataset(
"arc",,
split=["train", "validation", "test"],
)
training_examples = dataset[0]
evaluation_examples = dataset[1]
test_examples = dataset[2]
example=training_examples[0]
example_id = example["example_id"]
question = example["question"]
label_example = example["answer"]
options = example["options"]
if label_example in ["A", "B", "C", "D", "E"]:
label_map = {label: i for i, label in enumerate(
["A", "B", "C", "D", "E"])}
elif label_example in ["1", "2", "3", "4", "5"]:
label_map = {label: i for i, label in enumerate(
["1", "2", "3", "4", "5"])}
else:
print(f"{label_example} not found")
while len(options) < 5:
empty_option = {}
empty_option['option_context'] = ''
empty_option['option_text'] = ''
options.append(empty_option)
choices_inputs = []
for ending_idx, option in enumerate(options):
ending = option["option_text"]
context = option["option_context"]
if question.find("_") != -1:
# fill in the banks questions
question_option = question.replace("_", ending)
else:
question_option = question + " " + ending
inputs = tokenizer(
context,
question_option,
add_special_tokens=True,
max_length=MAX_SEQ_LENGTH,
padding="max_length",
truncation=True,
return_overflowing_tokens=False,
)
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
logging.warning(f"Question: {example_id} with option {ending_idx} was truncated")
choices_inputs.append(inputs)
label = label_map[label_example]
input_ids = [x["input_ids"] for x in choices_inputs]
attention_mask = (
[x["attention_mask"] for x in choices_inputs]
# as the senteces follow the same structure, just one of them is
# necessary to check
if "attention_mask" in choices_inputs[0]
else None
)
example_encoded = {
"example_id": example_id,
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"label": label
}
output = model(**example_encoded)
```
## Training data
the Training data was the same as proposed [here](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0)
The only diferrence was the hypeparameters of RACE fine tuned model, which were reported [here](https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race#eval-results)
## Training procedure
It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following:
| Hyperparameter | Value |
|:----:|:----:|
| adam_beta1 | 0.9 |
| adam_beta2 | 0.98 |
| adam_epsilon | 1.000e-8 |
| eval_batch_size | 16 |
| train_batch_size | 4 |
| fp16 | True |
| gradient_accumulation_steps | 4 |
| learning_rate | 0.00001 |
| warmup_steps | 0.06 |
| max_length | 256 |
| epochs | 4 |
The other parameters were the default ones from [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) and [Trainer Arguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments)
## Eval results:
| Dataset Acc | Challenge Test |
|:----:|:----:|
| | 65.358 |
**The model was trained with a TITAN RTX**