Edit model card

1. Introduction of LLM4Decompile

LLM4Decompile aims to decompile x86 assembly instructions into C. The newly released V1.5 series are trained with a larger dataset (15B tokens) and a maximum token length of 4,096, with remarkable performance (up to 100% improvement) compared to the previous model.

2. Evaluation Results

Model/Benchmark HumanEval-Decompile ExeBench
Optimization Level O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG
DeepSeek-Coder-6.7B 0 0 0 0 0 0 0 0 0 0.0000
GPT-4o 0.3049 0.1159 0.1037 0.1159 0.1601 0.0443 0.0328 0.0397 0.0343 0.0378
LLM4Decompile-End-1.3B 0.4720 0.2061 0.2122 0.2024 0.2732 0.1786 0.1362 0.1320 0.1328 0.1449
LLM4Decompile-End-6.7B 0.6805 0.3951 0.3671 0.3720 0.4537 0.2289 0.1660 0.1618 0.1625 0.1798
LLM4Decompile-End-33B 0.5168 0.2956 0.2815 0.2675 0.3404 0.1886 0.1465 0.1396 0.1411 0.1540

3. How to Use

Here is an example of how to use our model (Revised for V1.5). Note: Replace func0 with the function name you want to decompile.

Preprocessing: Compile the C code into binary, and disassemble the binary into assembly instructions.

import subprocess
import os

OPT = ["O0", "O1", "O2", "O3"]
fileName = 'samples/sample' #'path/to/file'
for opt_state in OPT:
    output_file = fileName +'_' + opt_state
    input_file = fileName+'.c'
    compile_command = f'gcc -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux
    subprocess.run(compile_command, shell=True, check=True)
    compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
    subprocess.run(compile_command, shell=True, check=True)
    
    input_asm = ''
    with open(output_file+'.s') as f:#asm file
        asm= f.read()
        if '<'+'func0'+'>:' not in asm: #IMPORTANT replace func0 with the function name
            raise ValueError("compile fails")
        asm = '<'+'func0'+'>:' + asm.split('<'+'func0'+'>:')[-1].split('\n\n')[0] #IMPORTANT replace func0 with the function name
        asm_clean = ""
        asm_sp = asm.split("\n")
        for tmp in asm_sp:
            if len(tmp.split("\t"))<3 and '00' in tmp:
                continue
            idx = min(
                len(tmp.split("\t")) - 1, 2
            )
            tmp_asm = "\t".join(tmp.split("\t")[idx:])  # remove the binary code
            tmp_asm = tmp_asm.split("#")[0].strip()  # remove the comments
            asm_clean += tmp_asm + "\n"
    input_asm = asm_clean.strip()
    before = f"# This is the assembly code:\n"#prompt
    after = "\n# What is the source code?\n"#prompt
    input_asm_prompt = before+input_asm.strip()+after
    with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
        f.write(input_asm_prompt)

Decompilation: Use LLM4Decompile to translate the assembly instructions into C:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_path = 'LLM4Binary/llm4decompile-6.7b-v1.5' # V1.5 Model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()

with open(fileName +'_' + OPT[0] +'.asm','r') as f:#optimization level O0
    asm_func = f.read()
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=4000)
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])

with open(fileName +'.c','r') as f:#original file
    func = f.read()

print(f'original function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions
print(f'decompiled function:\n{c_func_decompile}')

4. License

This code repository is licensed under the MIT License.

5. Contact

If you have any questions, please raise an issue.

Downloads last month
29,258
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LLM4Binary/llm4decompile-6.7b-v1.5

Finetunes
4 models
Quantizations
2 models

Space using LLM4Binary/llm4decompile-6.7b-v1.5 1