Lemswasabi's picture
Update README.md
1642ea8
metadata
tags:
  - automatic-speech-recognition
  - generated_from_trainer
language:
  - lb
metrics:
  - wer
pipeline_tag: automatic-speech-recognition
license: mit
model-index:
  - name: Lemswasabi/wav2vec2-large-xlsr-53-842h-luxembourgish-14h-with-lm
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        metrics:
          - type: wer
            value: 11.68
            name: Dev WER
          - type: wer
            value: 10.71
            name: Test WER
          - type: cer
            value: 2.64
            name: Dev CER
          - type: cer
            value: 2.31
            name: Test CER

Model description

We fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech collected from RTL.lu. Then the model was fine-tuned on 14h of labelled Luxembourgish speech from the same domain.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.1
  • Tokenizers 0.12.1

Citation

This model is a result of our paper IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS submitted to the IEEE SLT 2022 workshop

@misc{lb-wav2vec2,
  author = {Nguyen, Le Minh and Nayak, Shekhar and Coler, Matt.},
  keywords = {Luxembourgish, multilingual speech recognition, language modelling, wav2vec 2.0 XLSR-53, under-resourced language},
  title = {IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS},
  year = {2022},
  copyright = {2023 IEEE}
}