|
from utils.basic_utils import load_jsonl, save_jsonl, load_json |
|
import pandas as pd |
|
from tqdm import tqdm |
|
import numpy as np |
|
from collections import defaultdict |
|
import copy |
|
|
|
def calculate_iou(pred_start: float, pred_end: float, gt_start: float, gt_end: float) -> float: |
|
intersection_start = max(pred_start, gt_start) |
|
intersection_end = min(pred_end, gt_end) |
|
intersection = max(0, intersection_end - intersection_start) |
|
union = (pred_end - pred_start) + (gt_end - gt_start) - intersection |
|
return intersection / union if union > 0 else 0 |
|
|
|
|
|
|
|
def calculate_dcg(scores): |
|
return sum((2**score - 1) / np.log2(idx + 2) for idx, score in enumerate(scores)) |
|
|
|
|
|
def calculate_ndcg(pred_scores, true_scores): |
|
dcg = calculate_dcg(pred_scores) |
|
idcg = calculate_dcg(sorted(true_scores, reverse=True)) |
|
return dcg / idcg if idcg > 0 else 0 |
|
|
|
|
|
|
|
def calculate_ndcg_iou(all_gt, all_pred, TS, KS): |
|
performance = defaultdict(lambda: defaultdict(list)) |
|
performance_avg = defaultdict(lambda: defaultdict(float)) |
|
for k in tqdm(all_pred.keys(), desc="Calculate NDCG"): |
|
one_pred = all_pred[k] |
|
one_gt = all_gt[k] |
|
|
|
one_gt.sort(key=lambda x: x["relevance"], reverse=True) |
|
for T in TS: |
|
one_gt_drop = copy.deepcopy(one_gt) |
|
predictions_with_scores = [] |
|
|
|
for pred in one_pred: |
|
pred_video_name, pred_time = pred["video_name"], pred["timestamp"] |
|
matched_rows = [gt for gt in one_gt_drop if gt["video_name"] == pred_video_name] |
|
if not matched_rows: |
|
pred["pred_relevance"] = 0 |
|
else: |
|
ious = [calculate_iou(pred_time[0], pred_time[1], gt["timestamp"][0], gt["timestamp"][1]) for gt in matched_rows] |
|
max_iou_idx = np.argmax(ious) |
|
max_iou_row = matched_rows[max_iou_idx] |
|
|
|
if ious[max_iou_idx] > T: |
|
pred["pred_relevance"] = max_iou_row["relevance"] |
|
|
|
original_idx = one_gt_drop.index(max_iou_row) |
|
one_gt_drop.pop(original_idx) |
|
else: |
|
pred["pred_relevance"] = 0 |
|
predictions_with_scores.append(pred) |
|
for K in KS: |
|
true_scores = [gt["relevance"] for gt in one_gt][:K] |
|
pred_scores = [pred["pred_relevance"] for pred in predictions_with_scores][:K] |
|
ndcg_score = calculate_ndcg(pred_scores, true_scores) |
|
performance[K][T].append(ndcg_score) |
|
for K, vs in performance.items(): |
|
for T, v in vs.items(): |
|
performance_avg[K][T] = np.mean(v) |
|
return performance_avg |
|
|